Displaying similar documents to “A family of meta-Fibonacci sequences defined by variable-order recursions.”

On terms of linear recurrence sequences with only one distinct block of digits

Diego Marques, Alain Togbé (2011)

Colloquium Mathematicae

Similarity:

In 2000, Florian Luca proved that F₁₀ = 55 and L₅ = 11 are the largest numbers with only one distinct digit in the Fibonacci and Lucas sequences, respectively. In this paper, we find terms of a linear recurrence sequence with only one block of digits in its expansion in base g ≥ 2. As an application, we generalize Luca's result by finding the Fibonacci and Lucas numbers with only one distinct block of digits of length up to 10 in its decimal expansion.

An inequality for Fibonacci numbers

Horst Alzer, Florian Luca (2022)

Mathematica Bohemica

Similarity:

We extend an inequality for Fibonacci numbers published by P. G. Popescu and J. L. Díaz-Barrero in 2006.

Irreducible Sobol' sequences in prime power bases

Henri Faure, Christiane Lemieux (2016)

Acta Arithmetica

Similarity:

Sobol' sequences are a popular family of low-discrepancy sequences, in spite of requiring primitive polynomials instead of irreducible ones in later constructions by Niederreiter and Tezuka. We introduce a generalization of Sobol' sequences that removes this shortcoming and that we believe has the potential of becoming useful for practical applications. Indeed, these sequences preserve two important properties of the original construction proposed by Sobol': their generating matrices...

The positivity problem for fourth order linear recurrence sequences is decidable

Pinthira Tangsupphathawat, Narong Punnim, Vichian Laohakosol (2012)

Colloquium Mathematicae

Similarity:

The problem whether each element of a sequence satisfying a fourth order linear recurrence with integer coefficients is nonnegative, referred to as the Positivity Problem for fourth order linear recurrence sequence, is shown to be decidable.