Displaying similar documents to “Recovery of time-dependent parameters of a Black-Scholes-type equation: An inverse Stieltjes moment approach.”

Option pricing in a CEV model with liquidity costs

Krzysztof Turek (2016)

Applicationes Mathematicae

Similarity:

The goal of this paper is to make an attempt to generalise the model of pricing European options with an illiquid underlying asset considered by Rogers and Singh (2010). We assume that an investor's decisions have only a temporary effect on the price, which is proportional to the square of the change of the number of asset units in the investor's portfolio. We also assume that the underlying asset price follows a CEV model. To prove existence and uniqueness of the solution, we use techniques...

DG method for the numerical pricing of two-asset European-style Asian options with fixed strike

Jiří Hozman, Tomáš Tichý (2017)

Applications of Mathematics

Similarity:

The evaluation of option premium is a very delicate issue arising from the assumptions made under a financial market model, and pricing of a wide range of options is generally feasible only when numerical methods are involved. This paper is based on our recent research on numerical pricing of path-dependent multi-asset options and extends these results also to the case of Asian options with fixed strike. First, we recall the three-dimensional backward parabolic PDE describing the evolution...

Pricing forward-start options in the HJM framework; evidence from the Polish market

P. Sztuba, A. Weron (2001)

Applicationes Mathematicae

Similarity:

We show how to use the Gaussian HJM model to price modified forward-start options. Using data from the Polish market we calibrate the model and price this exotic option on the term structure. The specific problems of Central Eastern European emerging markets do not permit the use of the popular lognormal models of forward LIBOR or swap rates. We show how to overcome this difficulty.