The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Inverse spectral problems for tridiagonal N by N complex Hamiltonians.”

On a Five-Diagonal Jacobi Matrices and Orthogonal Polynomials on Rays in the Complex Plane

Zagorodniuk, S. (1998)

Serdica Mathematical Journal

Similarity:

∗ Partially supported by Grant MM-428/94 of MESC. Systems of orthogonal polynomials on the real line play an important role in the theory of special functions [1]. They find applications in numerous problems of mathematical physics and classical analysis. It is known, that classical polynomials have a number of properties, which uniquely define them.

Bessel matrix differential equations: explicit solutions of initial and two-point boundary value problems

Enrique Navarro, Rafael Company, Lucas Jódar (1993)

Applicationes Mathematicae

Similarity:

In this paper we consider Bessel equations of the type t 2 X ( 2 ) ( t ) + t X ( 1 ) ( t ) + ( t 2 I - A 2 ) X ( t ) = 0 , where A is an n × n complex matrix and X(t) is an n × m matrix for t > 0. Following the ideas of the scalar case we introduce the concept of a fundamental set of solutions for the above equation expressed in terms of the data dimension. This concept allows us to give an explicit closed form solution of initial and two-point boundary value problems related to the Bessel equation.