The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Lattice in Rank One Lie Groups Over Local Fields.”

Sunflowers in lattices.

McKenna, Geoffrey (2005)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Linear maps Lie derivable at zero on 𝒥-subspace lattice algebras

Xiaofei Qi, Jinchuan Hou (2010)

Studia Mathematica

Similarity:

A linear map L on an algebra is said to be Lie derivable at zero if L([A,B]) = [L(A),B] + [A,L(B)] whenever [A,B] = 0. It is shown that, for a 𝒥-subspace lattice ℒ on a Banach space X satisfying dim K ≠ 2 whenever K ∈ 𝒥(ℒ), every linear map on ℱ(ℒ) (the subalgebra of all finite rank operators in the JSL algebra Alg ℒ) Lie derivable at zero is of the standard form A ↦ δ (A) + ϕ(A), where δ is a generalized derivation and ϕ is a center-valued linear map. A characterization of linear...