Displaying similar documents to “Towards the Definition of Symplectic Boundary.”

On the number of components of the symplectic representatives of the canonical class

Stefano Vidussi (2007)

Journal of the European Mathematical Society


We show that there exists a family of simply connected, symplectic 4-manifolds such that the (Poincaré dual of the) canonical class admits both connected and disconnected symplectic representatives. This answers a question raised by Fintushel and Stern.

Symplectic embedding of thin discs into a ball

Takeo Nishinou (2004)

Mathematica Bohemica


We perform symplectic embeddings of ‘thin’ discs into a small ball in arbitrary dimension, using the symplectic folding construction.