C1 Changes of Variable: Beurling-Helson Type Theorem and Hörmander Conjecture on Fourier Multipliers.
V. Lebedev, A. Olevskii (1994)
Geometric and functional analysis
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
V. Lebedev, A. Olevskii (1994)
Geometric and functional analysis
Similarity:
M. Wojciechowski (2002)
Studia Mathematica
Similarity:
Douglas S. Kurtz (1990)
Colloquium Mathematicae
Similarity:
Carlos Kenig, Peter Tomas (1980)
Studia Mathematica
Similarity:
Naohito Tomita (2006)
Studia Mathematica
Similarity:
Figà-Talamanca characterized the space of Fourier multipliers as the dual space of a certain Banach space. In this paper, we characterize the space of maximal Fourier multipliers as a dual space.
Max Jodeit (1970)
Studia Mathematica
Similarity:
Yang-Chun Chang, P. Tomas (1984)
Studia Mathematica
Similarity:
G. Ritter, R.E. Edwards, E. Hewitt (1977)
Inventiones mathematicae
Similarity:
K. Unni (1974)
Studia Mathematica
Similarity:
Gero Fendler (2002)
Colloquium Mathematicae
Similarity:
Answering a question of Pisier, posed in [10], we construct an L-set which is not a finite union of translates of free sets.
S. Hartman (1987)
Colloquium Mathematicae
Similarity:
A. Ülger (2002)
Studia Mathematica
Similarity:
Let A be a commutative semisimple Banach algebra, Δ(A) its Gelfand spectrum, T a multiplier on A and T̂ its Gelfand transform. We study the following problems. (a) When is δ(T) = inf{|T̂(f)|: f ∈ Δ(A), T̂(f) ≠ 0} > 0? (b) When is the range T(A) of T closed in A and does it have a bounded approximate identity? (c) How to characterize the idempotent multipliers in terms of subsets of Δ(A)?
M. Bożejko, T. Pytlik (1972)
Colloquium Mathematicae
Similarity:
S. Hartman (1989)
Colloquium Mathematicae
Similarity:
A. F. Kleiner (1973)
Colloquium Mathematicae
Similarity:
A. Szaz (1981)
Matematički Vesnik
Similarity: