Corrigendum to Resolutions of homology manifolds, and the topological characterization of manifolds.
F. Quinn (1986)
Inventiones mathematicae
Similarity:
F. Quinn (1986)
Inventiones mathematicae
Similarity:
Frank Quinn (1983)
Inventiones mathematicae
Similarity:
Reinhold Böhme (1990)
Forum mathematicum
Similarity:
Karasözen, B., Konopleva, I.V., Loginov, B.V. (2005)
Lobachevskii Journal of Mathematics
Similarity:
Roger Bielawski (2009)
Open Mathematics
Similarity:
The original version of the article was published in Central European Journal of Mathematics, 2008, 6(2), 191–203, DOI: 10.2478/s11533-008-0026-8. Unfortunately, the original version of this article contains a mistake, which we correct here.
J. Cheeger, X. Rong (1996)
Geometric and functional analysis
Similarity:
Barbara Opozda
Similarity:
CONTENTSIntroduction.................................................................................................................................................51. Preliminaries...........................................................................................................................................62. f-Kählerian manifolds............................................................................................................................113. The f-sectional...
Chuan-Chih Hsiung (1963)
Mathematische Zeitschrift
Similarity:
H. Moscovici, F.-B. Wu (1994)
Geometric and functional analysis
Similarity:
C. B. Thomas (1986)
Banach Center Publications
Similarity:
Emery Thomas, John Wood (1974)
Inventiones mathematicae
Similarity:
Toru Ishihara (1982)
Manuscripta mathematica
Similarity:
Sławomir Kwasik, Witold Rosicki (2004)
Fundamenta Mathematicae
Similarity:
We address the following question: How different can closed, oriented 3-manifolds be if they become homeomorphic after taking a product with a sphere? For geometric 3-manifolds this paper provides a complete answer to this question. For possibly non-geometric 3-manifolds, we establish results which concern 3-manifolds with finite fundamental group (i.e., 3-dimensional fake spherical space forms) and compare these results with results involving fake spherical space...