On the Degre of L1-aproximation by Modified Bernstein Polynomials
Suresh Prasad Singh, O.P. Varshney, Govind Prasad (1983)
Publications de l'Institut Mathématique
Similarity:
Suresh Prasad Singh, O.P. Varshney, Govind Prasad (1983)
Publications de l'Institut Mathématique
Similarity:
Marek Beśka (1989)
Banach Center Publications
Similarity:
Simsek, Yilmaz, Açıkgöz, Mehmet (2010)
Abstract and Applied Analysis
Similarity:
Kim, T., Choi, J., Kim, Y.H. (2010)
Abstract and Applied Analysis
Similarity:
Jean-Pierre Gabardo (1994/95)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Similarity:
Kim, Taekyun, Jang, Lee-Chae, Yi, Heungsu (2010)
Discrete Dynamics in Nature and Society
Similarity:
Gavrea, Ioan, Kacsó, Daniela (1998)
General Mathematics
Similarity:
Guo, Shunsheng, Yue, Shujie, Li, Cuixiang, Yang, Ge, Sun, Yiguo (1996)
Abstract and Applied Analysis
Similarity:
P.N. Shrivastava (1978)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Gal, Sorin G., Tachev, Gancho T. (2013)
Mathematica Balkanica New Series
Similarity:
MSC 2010: 41A10, 41A15, 41A25, 41A36 For functions belonging to the classes C2[0; 1] and C3[0; 1], we establish the lower estimate with an explicit constant in approximation by Bernstein polynomials in terms of the second order Ditzian-Totik modulus of smoothness. Several applications to some concrete examples of functions are presented.