A Search for Best Constants in the Hardy-Littlewood Maximal Theorem.
R. Dror, S. Ganguli, R. Strichartz (1995)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
R. Dror, S. Ganguli, R. Strichartz (1995)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Similarity:
Per Sjölin, Elena Perstini (2000)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Similarity:
P. Szeptycki (1983)
Annales Polonici Mathematici
Similarity:
Wu, Changhong, Liu, Lanzhe (2006)
Lobachevskii Journal of Mathematics
Similarity:
Liu, Lanzhe (2003)
Lobachevskii Journal of Mathematics
Similarity:
James E. Daly (1999)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Similarity:
Kislyakov, S.V., Parilov, D.V. (2005)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Liliana de Rosa, Carlos Segovia (1997)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Similarity:
Luis Caffarelli, Calixto Calderón (1974)
Studia Mathematica
Similarity:
Guanghui Lu, Dinghuai Wang (2023)
Czechoslovak Mathematical Journal
Similarity:
We study the mapping property of the commutator of Hardy-Littlewood maximal function on Triebel-Lizorkin spaces. Also, some new characterizations of the Lipschitz spaces are given.
Alberto Torchinsky, Shilin Wang (1990)
Colloquium Mathematicae
Similarity:
M. Mateljević, M. Pavlović (1982)
Matematički Vesnik
Similarity:
Leonardo Colzani, Javier Pérez Lázaro (2010)
Colloquium Mathematicae
Similarity:
We prove that peak shaped eigenfunctions of the one-dimensional uncentered Hardy-Littlewood maximal operator are symmetric and homogeneous. This implies that the norms of the maximal operator on L(p) spaces are not attained.
Dmitry V. Rutsky (2014)
Studia Mathematica
Similarity:
The Coifman-Fefferman inequality implies quite easily that a Calderón-Zygmund operator T acts boundedly in a Banach lattice X on ℝⁿ if the Hardy-Littlewood maximal operator M is bounded in both X and X'. We establish a converse result under the assumption that X has the Fatou property and X is p-convex and q-concave with some 1 < p, q < ∞: if a linear operator T is bounded in X and T is nondegenerate in a certain sense (for example, if T is a Riesz transform) then M is bounded...
S. K. Pichorides (1990)
Colloquium Mathematicae
Similarity: