О первичных йордановых тройных системах. III.
Е.И. Зельманов (1985)
Sibirskij matematiceskij zurnal
Similarity:
Е.И. Зельманов (1985)
Sibirskij matematiceskij zurnal
Similarity:
А.В. Чехонадских (1985)
Sibirskij matematiceskij zurnal
Similarity:
Е.И. Зельманов (1983)
Sibirskij matematiceskij zurnal
Similarity:
Е.И. Зельманов (1986)
Sibirskij matematiceskij zurnal
Similarity:
В.Н. Желябин (1998)
Sibirskij matematiceskij zurnal
Similarity:
А.С. Штерн (1991)
Sibirskij matematiceskij zurnal
Similarity:
He Yuan, Liangyun Chen (2016)
Colloquium Mathematicae
Similarity:
We study Jordan (θ,θ)-superderivations and Jordan triple (θ,θ)-superderivations of superalgebras, using the theory of functional identities in superalgebras. As a consequence, we prove that if A = A₀ ⊕ A₁ is a prime superalgebra with deg(A₁) ≥ 9, then Jordan superderivations and Jordan triple superderivations of A are superderivations of A, and generalized Jordan superderivations and generalized Jordan triple superderivations of A are generalized superderivations of A.
О.Н. Жданов, А.К. Цих (1998)
Sibirskij matematiceskij zurnal
Similarity:
Antonio Fernández López (1988)
Collectanea Mathematica
Similarity:
Ю.А. Медведев (1985)
Sibirskij matematiceskij zurnal
Similarity:
J. Harkness (1893/94)
Bulletin of the New York Mathematical Society
Similarity:
Sara Shafiq, Muhammad Aslam (2017)
Open Mathematics
Similarity:
In this paper, the notions of Jordan homomorphism and Jordan derivation of inverse semirings are introduced. A few results of Herstein and Brešar on Jordan homomorphisms and Jordan derivations of rings are generalized in the setting of inverse semirings.
Dilian Yang (2005)
Colloquium Mathematicae
Similarity:
Motivated by Problem 2 in [2], Jordan *-derivation pairs and n-Jordan *-mappings are studied. From the results on these mappings, an affirmative answer to Problem 2 in [2] is given when E = F in (1) or when 𝓐 is unital. For the general case, we prove that every Jordan *-derivation pair is automatically real-linear. Furthermore, a characterization of a non-normal prime *-ring under some mild assumptions and a representation theorem for quasi-quadratic functionals are provided. ...