О первичных йордановых тройных системах. III.
Е.И. Зельманов (1985)
Sibirskij matematiceskij zurnal
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Е.И. Зельманов (1985)
Sibirskij matematiceskij zurnal
Similarity:
Е.И. Зельманов (1984)
Sibirskij matematiceskij zurnal
Similarity:
Е.И. Зельманов (1986)
Sibirskij matematiceskij zurnal
Similarity:
В.Н. Желябин (1998)
Sibirskij matematiceskij zurnal
Similarity:
Е.И. Зельманов (1983)
Sibirskij matematiceskij zurnal
Similarity:
А.С. Штерн (1991)
Sibirskij matematiceskij zurnal
Similarity:
О.Н. Жданов, А.К. Цих (1998)
Sibirskij matematiceskij zurnal
Similarity:
Е.И. Зельманов (1982)
Sibirskij matematiceskij zurnal
Similarity:
He Yuan, Liangyun Chen (2016)
Colloquium Mathematicae
Similarity:
We study Jordan (θ,θ)-superderivations and Jordan triple (θ,θ)-superderivations of superalgebras, using the theory of functional identities in superalgebras. As a consequence, we prove that if A = A₀ ⊕ A₁ is a prime superalgebra with deg(A₁) ≥ 9, then Jordan superderivations and Jordan triple superderivations of A are superderivations of A, and generalized Jordan superderivations and generalized Jordan triple superderivations of A are generalized superderivations of A.
Ю.А. Медведев (1985)
Sibirskij matematiceskij zurnal
Similarity:
Ш.А. Аюпов (1984)
Sibirskij matematiceskij zurnal
Similarity:
J. Harkness (1893/94)
Bulletin of the New York Mathematical Society
Similarity:
Sara Shafiq, Muhammad Aslam (2017)
Open Mathematics
Similarity:
In this paper, the notions of Jordan homomorphism and Jordan derivation of inverse semirings are introduced. A few results of Herstein and Brešar on Jordan homomorphisms and Jordan derivations of rings are generalized in the setting of inverse semirings.