Конечные локально -графы.
А.А. Махнёв (1994)
Sibirskij matematiceskij zurnal
Similarity:
А.А. Махнёв (1994)
Sibirskij matematiceskij zurnal
Similarity:
Vladimír Vetchý (2018)
Archivum Mathematicum
Similarity:
The present paper deals with the spectra of powers of metrically regular graphs. We prove that there is only two tables of the parameters of an association scheme so that the corresponding metrically regular bipartite graph of diameter (8 distinct eigenvalues of the adjacency matrix) has the metrically regular square. The results deal with the graphs of the diameter see [8], [9] and [10].
А.И. Черемисин (1973)
Sibirskij matematiceskij zurnal
Similarity:
Я.В. Хион (1967)
Sibirskij matematiceskij zurnal
Similarity:
В.А. Чатырко (1990)
Sibirskij matematiceskij zurnal
Similarity:
М.Ш. Браверман (1991)
Sibirskij matematiceskij zurnal
Similarity:
В.Б. Коротков (1980)
Sibirskij matematiceskij zurnal
Similarity:
Б.М. Макаров, null Хоанг Ван Хунг (1995)
Sibirskij matematiceskij zurnal
Similarity:
А.А. Агеев (1994)
Sibirskij matematiceskij zurnal
Similarity:
Б.М. Бычков, В.М. Гробер (1967)
Sibirskij matematiceskij zurnal
Similarity:
И.Д. Фрумин (1983)
Sibirskij matematiceskij zurnal
Similarity:
Dalibor Fronček (1998)
Discussiones Mathematicae Graph Theory
Similarity:
A complete 4-partite graph is called d-halvable if it can be decomposed into two isomorphic factors of diameter d. In the class of graphs with at most one odd part all d-halvable graphs are known. In the class of biregular graphs with four odd parts (i.e., the graphs and ) all d-halvable graphs are known as well, except for the graphs when d = 2 and n ≠ m. We prove that such graphs are 2-halvable iff n,m ≥ 3. We also determine a new class of non-halvable graphs with three...
Т.С. Михайлова (1972)
Sibirskij matematiceskij zurnal
Similarity: