Displaying similar documents to “Коротковолновое скользящее рассеяние плоской волны на гладкой периодической границе. II. Дифракция на бесконечной периодической границе”

Invisible obstacles

A. G. Ramm (2007)

Annales Polonici Mathematici

Similarity:

It is proved that one can choose a control function on an arbitrarilly small open subset of the boundary of an obstacle so that the total radiation from this obstacle for a fixed direction of the incident plane wave and for a fixed wave number will be as small as one wishes. The obstacle is called "invisible" in this case.

Wave Operators for Defocusing Matrix Zakharov-Shabat Systems with Pnonvanishing at Infinity

Demontis, Francesco, der Mee, Cornelis van (2010)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: Primary: 34L25; secondary: 47A40, 81Q10. In this article we prove that the wave operators describing the direct scattering of the defocusing matrix Zakharov-Shabat system with potentials having distinct nonzero values with the same modulus at ± ∞ exist, are asymptotically complete, and lead to a unitary scattering operator. We also prove that the free Hamiltonian operator is absolutely continuous.

Scattering theory for a nonlinear system of wave equations with critical growth

Changxing Miao, Youbin Zhu (2006)

Colloquium Mathematicae

Similarity:

We consider scattering properties of the critical nonlinear system of wave equations with Hamilton structure ⎧uₜₜ - Δu = -F₁(|u|²,|v|²)u, ⎨ ⎩vₜₜ - Δv = -F₂(|u|²,|v|²)v, for which there exists a function F(λ,μ) such that ∂F(λ,μ)/∂λ = F₁(λ,μ), ∂F(λ,μ)/∂μ = F₂(λ,μ). By using the energy-conservation law over the exterior of a truncated forward light cone and a dilation identity, we get a decay estimate for...

Waves of excitations in heterogeneous annular region II. Strong asymmetry

Kristóf Kály-Kullai, András Volford, Henrik Farkas (2003)

Banach Center Publications

Similarity:

Excitation wave propagation in a heterogeneous medium around a circular obstacle is investigated, when the obstacle is located very eccentrically with respect to the interfacial circle separating the slow inner and the fast outer region. Qualitative properties of the permanent wave fronts are described, and the calculated wave forms are presented.