Displaying similar documents to “Uniformly convex and uniformly smooth convex functions”

The cancellation law for inf-convolution of convex functions

Dariusz Zagrodny (1994)

Studia Mathematica

Similarity:

Conditions under which the inf-convolution of f and g f g ( x ) : = i n f y + z = x ( f ( y ) + g ( z ) ) has the cancellation property (i.e. f □ h ≡ g □ h implies f ≡ g) are treated in a convex analysis framework. In particular, we show that the set of strictly convex lower semicontinuous functions f : X + on a reflexive Banach space such that l i m x f ( x ) / x = constitutes a semigroup, with inf-convolution as multiplication, which can be embedded in the group of its quotients.

On equivalent strictly G-convex renormings of Banach spaces

Nataliia Boyko (2010)

Open Mathematics

Similarity:

We study strictly G-convex renormings and extensions of strictly G-convex norms on Banach spaces. We prove that ℓω(Γ) space cannot be strictly G-convex renormed given Γ is uncountable and G is bounded and separable.