Displaying similar documents to “Zeta functions of Jordan algebras representations”

Some infinite sums identities

Meher Jaban, Sinha Sneh Bala (2015)

Czechoslovak Mathematical Journal

Similarity:

We find the sum of series of the form i = 1 f ( i ) i r for some special functions f . The above series is a generalization of the Riemann zeta function. In particular, we take f as some values of Hurwitz zeta functions, harmonic numbers, and combination of both. These generalize some of the results given in Mező’s paper (2013). We use multiple zeta theory to prove all results. The series sums we have obtained are in terms of Bernoulli numbers and powers of π .

The size of the Lerch zeta-function at places symmetric with respect to the line ( s ) = 1 / 2

Ramūnas Garunkštis, Andrius Grigutis (2019)

Czechoslovak Mathematical Journal

Similarity:

Let ζ ( s ) be the Riemann zeta-function. If t 6 . 8 and σ > 1 / 2 , then it is known that the inequality | ζ ( 1 - s ) | > | ζ ( s ) | is valid except at the zeros of ζ ( s ) . Here we investigate the Lerch zeta-function L ( λ , α , s ) which usually has many zeros off the critical line and it is expected that these zeros are asymmetrically distributed with respect to the critical line. However, for equal parameters λ = α it is still possible to obtain a certain version of the inequality | L ( λ , λ , 1 - s ¯ ) | > | L ( λ , λ , s ) | .

Truncated Infinitesimal Shifts, Spectral Operators and Quantized Universality of the Riemann Zeta Function

Hafedh Herichi, Michel L. Lapidus (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We survey some of the universality properties of the Riemann zeta function ζ ( s ) and then explain how to obtain a natural quantization of Voronin’s universality theorem (and of its various extensions). Our work builds on the theory of complex fractal dimensions for fractal strings developed by the second author and M. van Frankenhuijsen in [60]. It also makes an essential use of the functional analytic framework developed by the authors in [25] for rigorously studying the spectral operator...

Dirichlet series induced by the Riemann zeta-function

Jun-ichi Tanaka (2008)

Studia Mathematica

Similarity:

The Riemann zeta-function ζ(s) extends to an outer function in ergodic Hardy spaces on ω , the infinite-dimensional torus indexed by primes p. This enables us to investigate collectively certain properties of Dirichlet series of the form ( a p , s ) = p ( 1 - a p p - s ) - 1 for a p in ω . Among other things, using the Haar measure on ω for measuring the asymptotic behavior of ζ(s) in the critical strip, we shall prove, in a weak sense, the mean-value theorem for ζ(s), equivalent to the Lindelöf hypothesis.