Displaying similar documents to “Finite rank approximation and semidiscreteness for linear operators”

On completely bounded bimodule maps over W*-algebras

Bojan Magajna (2003)

Studia Mathematica

Similarity:

It is proved that for a von Neumann algebra A ⊆ B(ℋ ) the subspace of normal maps is dense in the space of all completely bounded A-bimodule homomorphisms of B(ℋ ) in the point norm topology if and only if the same holds for the corresponding unit balls, which is the case if and only if A is atomic with no central summands of type I , . Then a duality result for normal operator modules is presented and applied to the following problem. Given an operator space X and a von Neumann algebra...

The tensor algebra of power series spaces

Dietmar Vogt (2009)

Studia Mathematica

Similarity:

The linear isomorphism type of the tensor algebra T(E) of Fréchet spaces and, in particular, of power series spaces is studied. While for nuclear power series spaces of infinite type it is always s, the situation for finite type power series spaces is more complicated. The linear isomorphism T(s) ≅ s can be used to define a multiplication on s which makes it a Fréchet m-algebra s . This may be used to give an algebra analogue to the structure theory of s, that is, characterize Fréchet...

C * algebras associated with von Neumann algebras

Tullio G. Ceccherini-Silberstein (1999)

Bollettino dell'Unione Matematica Italiana

Similarity:

Ad un'algebra di von Neumann separabile M , in forma standard su di uno spazio di Hilbert H , si associa la C * algebra O M definita come la C * algebra O U M costituita dai punti fissi dell'algebra di Cuntz generalizzata O H mediante l'azione canonica del gruppo U M degli unitari di M . Si dà una caratterizzazione di O M nel caso in cui M è un fattore iniettivo. In seguito, come applicazione della teoria dei sistemi asintoticamente abeliani, si mostra che, se ω è uno stato vettoriale normale e fedele...

Schwartz kernel theorem in algebras of generalized functions

Vincent Valmorin (2010)

Banach Center Publications

Similarity:

A new approach to the generalization of Schwartz’s kernel theorem to Colombeau algebras of generalized functions is given. It is based on linear maps from algebras of classical functions to algebras of generalized ones. In particular, this approach enables one to give a meaning to certain hypotheses in preceding similar work on this theorem. Results based on the properties of G -generalized functions class are given. A straightforward relationship between the classical and the generalized...

Smooth operators in the commutant of a contraction

Pascale Vitse (2003)

Studia Mathematica

Similarity:

For a completely non-unitary contraction T, some necessary (and, in certain cases, sufficient) conditions are found for the range of the H calculus, H ( T ) , and the commutant, T’, to contain non-zero compact operators, and for the finite rank operators of T’ to be dense in the set of compact operators of T’. A sufficient condition is given for T’ to contain non-zero operators from the Schatten-von Neumann classes S p .

Finite-rank perturbations of positive operators and isometries

Man-Duen Choi, Pei Yuan Wu (2006)

Studia Mathematica

Similarity:

We completely characterize the ranks of A - B and A 1 / 2 - B 1 / 2 for operators A and B on a Hilbert space satisfying A ≥ B ≥ 0. Namely, let l and m be nonnegative integers or infinity. Then l = rank(A - B) and m = r a n k ( A 1 / 2 - B 1 / 2 ) for some operators A and B with A ≥ B ≥ 0 on a Hilbert space of dimension n (1 ≤ n ≤ ∞) if and only if l = m = 0 or 0 < l ≤ m ≤ n. In particular, this answers in the negative the question posed by C. Benhida whether for positive operators A and B the finiteness of rank(A - B) implies that...

Topological classification of strong duals to nuclear (LF)-spaces

Taras Banakh (2000)

Studia Mathematica

Similarity:

We show that the strong dual X’ to an infinite-dimensional nuclear (LF)-space is homeomorphic to one of the spaces: ω , , Q × , ω × , or ( ) ω , where = l i m n and Q = [ - 1 , 1 ] ω . In particular, the Schwartz space D’ of distributions is homeomorphic to ( ) ω . As a by-product of the proof we deduce that each infinite-dimensional locally convex space which is a direct limit of metrizable compacta is homeomorphic either to or to Q × . In particular, the strong dual to any metrizable infinite-dimensional Montel space is homeomorphic...

Some remarks on Q -algebras

Nicolas Th. Varopoulos (1972)

Annales de l'institut Fourier

Similarity:

We study Banach algebras that are quotients of uniform algebras and we show in particular that the class is stable by interpolation. We also show that p , ( 1 p ) are Q algebras and that A n = L 1 ( Z ; 1 + | n | α ) is a Q -algebra if and only if α &gt; 1 / 2 .

Noncommutative function theory and unique extensions

David P. Blecher, Louis E. Labuschagne (2007)

Studia Mathematica

Similarity:

We generalize, to the setting of Arveson’s maximal subdiagonal subalgebras of finite von Neumann algebras, the Szegő L p -distance estimate and classical theorems of F. and M. Riesz, Gleason and Whitney, and Kolmogorov. As a byproduct, this completes the noncommutative analog of the famous cycle of theorems characterizing the function algebraic generalizations of H from the 1960’s. A sample of our other results: we prove a Kaplansky density result for a large class of these algebras, and...

A new proof of the noncommutative Banach-Stone theorem

David Sherman (2006)

Banach Center Publications

Similarity:

Surjective isometries between unital C*-algebras were classified in 1951 by Kadison [K]. In 1972 Paterson and Sinclair [PS] handled the nonunital case by assuming Kadison’s theorem and supplying some supplementary lemmas. Here we combine an observation of Paterson and Sinclair with variations on the methods of Yeadon [Y] and the author [S1], producing a fundamentally new proof of the structure of surjective isometries between (nonunital) C*-algebras. In the final section we indicate...

Group C*-algebras satisfying Kadison's conjecture

Rachid El Harti, Paulo R. Pinto (2011)

Banach Center Publications

Similarity:

We tackle R. V. Kadison’s similarity problem (i.e. any bounded representation of any unital C*-algebra is similar to a *-representation), paying attention to the class of C*-unitarisable groups (those groups G for which the full group C*-algebra C*(G) satisfies Kadison’s problem) and thereby we establish some stability results for Kadison’s problem. Namely, we prove that A m i n B inherits the similarity problem from those of the C*-algebras A and B, provided B is also nuclear. Then we prove...

Dual algebras generated by von Neumann n-tuples over strictly pseudoconvex sets

Michael Didas

Similarity:

Let D ⋐ X denote a relatively compact strictly pseudoconvex open subset of a Stein submanifold X ⊂ ℂⁿ and let H be a separable complex Hilbert space. By a von Neumann n-tuple of class over D we mean a commuting n-tuple of operators T ∈ L(H)ⁿ possessing an isometric and weak* continuous H ( D ) -functional calculus as well as a ∂D-unitary dilation. The aim of this paper is to present an introduction to the structure theory of von Neumann n-tuples of class over D including the necessary function-...

A double commutant theorem for purely large C*-subalgebras of real rank zero corona algebras

P. W. Ng (2009)

Studia Mathematica

Similarity:

Let 𝓐 be a unital separable simple nuclear C*-algebra such that ℳ (𝓐 ⊗ 𝓚) has real rank zero. Suppose that ℂ is a separable simple liftable and purely large unital C*-subalgebra of ℳ (𝓐 ⊗ 𝓚)/ (𝓐 ⊗ 𝓚). Then the relative double commutant of ℂ in ℳ (𝓐 ⊗ 𝓚)/(𝓐 ⊗ 𝓚) is equal to ℂ.

Factoriality of von Neumann algebras connected with general commutation relations-finite dimensional case

Ilona Królak (2006)

Banach Center Publications

Similarity:

We study a certain class of von Neumann algebras generated by selfadjoint elements ω i = a i + a i , where a i , a i satisfy the general commutation relations: a i a j = r , s t j i r s a r a s + δ i j I d . We assume that the operator T for which the constants t j i r s are matrix coefficients satisfies the braid relation. Such algebras were investigated in [BSp] and [K] where the positivity of the Fock representation and factoriality in the case of infinite dimensional underlying space were shown. In this paper we prove that under certain conditions on the...

Self-adjoint extensions by additive perturbations

Andrea Posilicano (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Let A 𝒩 be the symmetric operator given by the restriction of A to 𝒩 , where A is a self-adjoint operator on the Hilbert space and 𝒩 is a linear dense set which is closed with respect to the graph norm on D ( A ) , the operator domain of A . We show that any self-adjoint extension A Θ of A 𝒩 such that D ( A Θ ) D ( A ) = 𝒩 can be additively decomposed by the sum A Θ = A ¯ + T Θ , where both the operators A ¯ and T Θ take values in the strong dual of D ( A ) . The operator A ¯ is the closed extension of A to the whole whereas T Θ is explicitly...

Quasi *-algebras of measurable operators

Fabio Bagarello, Camillo Trapani, Salvatore Triolo (2006)

Studia Mathematica

Similarity:

Non-commutative L p -spaces are shown to constitute examples of a class of Banach quasi *-algebras called CQ*-algebras. For p ≥ 2 they are also proved to possess a sufficient family of bounded positive sesquilinear forms with certain invariance properties. CQ*-algebras of measurable operators over a finite von Neumann algebra are also constructed and it is proven that any abstract CQ*-algebra (,₀) with a sufficient family of bounded positive tracial sesquilinear forms can be represented...

Beurling-Figà-Talamanca-Herz algebras

Serap Öztop, Volker Runde, Nico Spronk (2012)

Studia Mathematica

Similarity:

For a locally compact group G and p ∈ (1,∞), we define and study the Beurling-Figà-Talamanca-Herz algebras A p ( G , ω ) . For p = 2 and abelian G, these are precisely the Beurling algebras on the dual group Ĝ. For p = 2 and compact G, our approach subsumes an earlier one by H. H. Lee and E. Samei. The key to our approach is not to define Beurling algebras through weights, i.e., possibly unbounded continuous functions, but rather through their inverses, which are bounded continuous functions. We...