The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A method for constructing orthonormal bases for non-archimedean Banach spaces of continuous functions”

Orthonormal bases for spaces of continuous and continuously differentiable functions defined on a subset of Zp.

Ann Verdoodt (1996)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

Let K be a non-Archimedean valued field which contains Qp, and suppose that K is complete for the valuation |·|, which extends the p-adic valuation. Vq is the closure of the set {aqn | n = 0,1,2,...} where a and q are two units of Zp, q not a root of unity. C(Vq --> K) (resp. C1(Vq --> K)) is the Banach space of continuous functions (resp. continuously differentiable functions) from Vq to K. Our aim is to find orthonormal bases for C(Vq --> K) and C1(Vq -->...

Normal bases for the space of continuous functions defined on a subset of Z.

Ann Verdoodt (1994)

Publicacions Matemàtiques

Similarity:

Let K be a non-archimedean valued field which contains Q and suppose that K is complete for the valuation |·|, which extends the p-adic valuation. V is the closure of the set {aq|n = 0,1,2,...} where a and q are two units of Z, q not a root of unity. C(V → K) is the Banach space of continuous functions from V to K, equipped with the supremum norm. Our aim is to find normal bases (r(x)) for C(V → K), where r(x) does not have to be a polynomial.