Displaying similar documents to “On an oscillating random walk”

Discrete random processes with memory: Models and applications

Tomáš Kouřim, Petr Volf (2020)

Applications of Mathematics

Similarity:

The contribution focuses on Bernoulli-like random walks, where the past events significantly affect the walk's future development. The main concern of the paper is therefore the formulation of models describing the dependence of transition probabilities on the process history. Such an impact can be incorporated explicitly and transition probabilities modulated using a few parameters reflecting the current state of the walk as well as the information about the past path. The behavior...

A note on correlation coefficient between random events

Czesław Stępniak (2015)

Discussiones Mathematicae Probability and Statistics

Similarity:

Correlation coefficient is a well known measure of (linear) dependence between random variables. In his textbook published in 1980 L.T. Kubik introduced an analogue of such measure for random events A and B and studied its basic properties. We reveal that this measure reduces to the usual correlation coefficient between the indicator functions of A and B. In consequence the resuts by Kubik are obtained and strenghted directly. This is essential because the textbook is recommended by...

Excited random walk.

Benjamini, Itai, Wilson, David B. (2003)

Electronic Communications in Probability [electronic only]

Similarity:

Scaling limit of the random walk among random traps on ℤd

Jean-Christophe Mourrat (2011)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Attributing a positive value to each ∈ℤ, we investigate a nearest-neighbour random walk which is reversible for the measure with weights ( ), often known as “Bouchaud’s trap model.” We assume that these weights are independent, identically distributed and non-integrable random variables (with polynomial tail), and that ≥5. We obtain the quenched subdiffusive scaling limit of the model, the limit being the fractional kinetics process. We begin our proof...