Directed homotopy theory, II. Homotopy constructs.
Grandis, Marco (2002)
Theory and Applications of Categories [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Grandis, Marco (2002)
Theory and Applications of Categories [electronic only]
Similarity:
Floris Takens (1970)
Compositio Mathematica
Similarity:
J. Remedios-Gómez, S. Rodríguez-Machín (2001)
Extracta Mathematicae
Similarity:
Armin Frei (1981)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Murray Heggie (1992)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Jerrold Siegel (1980)
Fundamenta Mathematicae
Similarity:
Francisco Díaz, Sergio Rodríguez-Machín (2006)
Open Mathematics
Similarity:
Generally, in homotopy theory a cylinder object (or, its dual, a path object) is used to define homotopy between morphisms, and a cone object is used to build exact sequences of homotopy groups. Here, an axiomatic theory based on a cone functor is given. Suspension objects are associated to based objects and cofibrations, obtaining homotopy groups referred to an object and relative to a cofibration, respectively. Exact sequences of these groups are built. Algebraic and particular examples...
J. R. Dennett (1982)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity: