A Unified Theory of Perfect and Related Functions
M. N. Mukherjee, S. Raychaudhuri (1993)
Matematički Vesnik
Similarity:
M. N. Mukherjee, S. Raychaudhuri (1993)
Matematički Vesnik
Similarity:
P. John, H. Sachs, H. Zernitz (1987)
Applicationes Mathematicae
Similarity:
Marek Balcerzak, Joanna Rzepecka (1998)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
De Koninck, Jean-Marie, Ivić, Aleksandar (1998)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
G. L. Garg, B. Kumar (1989)
Matematički Vesnik
Similarity:
Tošić, Ratko, Vojvodić, Dušan (2000)
Novi Sad Journal of Mathematics
Similarity:
Min Tang, Xiao-Zhi Ren, Meng Li (2013)
Colloquium Mathematicae
Similarity:
For a positive integer n, let σ(n) denote the sum of the positive divisors of n. Let d be a proper divisor of n. We call n a near-perfect number if σ(n) = 2n + d, and a deficient-perfect number if σ(n) = 2n - d. We show that there is no odd near-perfect number with three distinct prime divisors and determine all deficient-perfect numbers with at most two distinct prime factors.