Semianalytic and subanalytic sets
Edward Bierstone, Pierre D. Milman (1988)
Publications Mathématiques de l'IHÉS
Similarity:
Edward Bierstone, Pierre D. Milman (1988)
Publications Mathématiques de l'IHÉS
Similarity:
F. Acquistapace, F. Broglia, A. Tognoli (1979)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
G. Nardelli, A. Tancredi (1996)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
Let X be a closed analytic subset of an open subset Omega of Rn. We look at the problem of extending functions from X to Omega.
Artur Piękosz (2004)
Open Mathematics
Similarity:
Letg:U→ℝ (U open in ℝn) be an analytic and K-subanalytic (i. e. definable in ℝanK, whereK, the field of exponents, is any subfield ofℝ) function. Then the set of points, denoted Σ, whereg does not admit an analytic extension is K-subanalytic andg can be extended analytically to a neighbourhood of Ū.
Jovan D. Keckic (1969)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Tsin-Hwa Shu (1961)
Annales Polonici Mathematici
Similarity:
Dubinin, V.N., Èĭrikh, N.V. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Cătaş, Adriana (2008)
Banach Journal of Mathematical Analysis [electronic only]
Similarity:
R. M. Shortt (1987)
Colloquium Mathematicae
Similarity: