Displaying similar documents to “A linear Radon-Nikodym type theorem for C * -algebras with applications to measure theory”

A Radon-Nikodym derivative for positive linear functionals

E. de Amo, M. Díaz Carrillo (2009)

Studia Mathematica

Similarity:

An exact Radon-Nikodym derivative is obtained for a pair (I,J) of positive linear functionals, with J absolutely continuous with respect to I, using a notion of exhaustion of I on elements of a function algebra lattice.

An exact functional Radon-Nikodym theorem for Daniell integrals

E. de Amo, I. Chitescu, M. Díaz Carrillo (2001)

Studia Mathematica

Similarity:

Given two positive Daniell integrals I and J, with J absolutely continuous with respect to I, we find sufficient conditions in order to obtain an exact Radon-Nikodym derivative f of J with respect to I. The procedure of obtaining f is constructive.

Some remarks on Gleason measures

P. De Nápoli, M. C. Mariani (2007)

Studia Mathematica

Similarity:

This work is devoted to generalizing the Lebesgue decomposition and the Radon-Nikodym theorem to Gleason measures. For that purpose we introduce a notion of integral for operators with respect to a Gleason measure. Finally, we give an example showing that the Gleason theorem does not hold in non-separable Hilbert spaces.

On the representation of certain functionals by measures on the Choquet boundary

David Alan Edwards (1963)

Annales de l'institut Fourier

Similarity:

On utilise le théorème de Hahn-Banach pour construire quelques fonctionnelles sur des espaces de fonctions continues. On caractérise la frontière de Choquet, et on donne des démonstrations simples : a) du théorème de Bishop et de Leeuw avec des conditions de séparabilité ; b) du théorème de Bauer.