States of operator algebras
R. Edwards (1960)
Studia Mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
R. Edwards (1960)
Studia Mathematica
Similarity:
B. Fishel (1969)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
E. de Amo, M. Díaz Carrillo (2009)
Studia Mathematica
Similarity:
An exact Radon-Nikodym derivative is obtained for a pair (I,J) of positive linear functionals, with J absolutely continuous with respect to I, using a notion of exhaustion of I on elements of a function algebra lattice.
Thiruvaiyaru V. Panchapagesan (1993)
Czechoslovak Mathematical Journal
Similarity:
E. de Amo, I. Chitescu, M. Díaz Carrillo (2001)
Studia Mathematica
Similarity:
Given two positive Daniell integrals I and J, with J absolutely continuous with respect to I, we find sufficient conditions in order to obtain an exact Radon-Nikodym derivative f of J with respect to I. The procedure of obtaining f is constructive.
P. De Nápoli, M. C. Mariani (2007)
Studia Mathematica
Similarity:
This work is devoted to generalizing the Lebesgue decomposition and the Radon-Nikodym theorem to Gleason measures. For that purpose we introduce a notion of integral for operators with respect to a Gleason measure. Finally, we give an example showing that the Gleason theorem does not hold in non-separable Hilbert spaces.
Shavkat A. Ajupov, Rustam Z. Abdullaev (1984/85)
Mathematische Zeitschrift
Similarity:
J. FERNÁNDEZ Novoa (1999)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Similarity:
David Alan Edwards (1963)
Annales de l'institut Fourier
Similarity:
On utilise le théorème de Hahn-Banach pour construire quelques fonctionnelles sur des espaces de fonctions continues. On caractérise la frontière de Choquet, et on donne des démonstrations simples : a) du théorème de Bishop et de Leeuw avec des conditions de séparabilité ; b) du théorème de Bauer.
Karl-Goswin Grosse-Erdmann (1989)
Colloquium Mathematicae
Similarity: