The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A linear Radon-Nikodym type theorem for C * -algebras with applications to measure theory”

A Radon-Nikodym derivative for positive linear functionals

E. de Amo, M. Díaz Carrillo (2009)

Studia Mathematica

Similarity:

An exact Radon-Nikodym derivative is obtained for a pair (I,J) of positive linear functionals, with J absolutely continuous with respect to I, using a notion of exhaustion of I on elements of a function algebra lattice.

An exact functional Radon-Nikodym theorem for Daniell integrals

E. de Amo, I. Chitescu, M. Díaz Carrillo (2001)

Studia Mathematica

Similarity:

Given two positive Daniell integrals I and J, with J absolutely continuous with respect to I, we find sufficient conditions in order to obtain an exact Radon-Nikodym derivative f of J with respect to I. The procedure of obtaining f is constructive.

Some remarks on Gleason measures

P. De Nápoli, M. C. Mariani (2007)

Studia Mathematica

Similarity:

This work is devoted to generalizing the Lebesgue decomposition and the Radon-Nikodym theorem to Gleason measures. For that purpose we introduce a notion of integral for operators with respect to a Gleason measure. Finally, we give an example showing that the Gleason theorem does not hold in non-separable Hilbert spaces.

On the representation of certain functionals by measures on the Choquet boundary

David Alan Edwards (1963)

Annales de l'institut Fourier

Similarity:

On utilise le théorème de Hahn-Banach pour construire quelques fonctionnelles sur des espaces de fonctions continues. On caractérise la frontière de Choquet, et on donne des démonstrations simples : a) du théorème de Bishop et de Leeuw avec des conditions de séparabilité ; b) du théorème de Bauer.