The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On L p -solutions of the Laplace equation and zeros of holomorphic functions”

Subsets of Hardy-class zero sets in the ball.

Pascal J. Thomas (1990)

Publicacions Matemàtiques

Similarity:

We consider the problem of whether the union of complex hyperplanes can be a subset of a zero variety for the Hardy classes of the ball. A sufficient condition is found, consisting in a strong geometric separatedness requirement, together with a quantitative requirement slightly stronger than the necessary condition for Nevanlinna class zero varieties.

Maximal and area integral characterizations of Hardy-Soboley spaces in the unit ball of C.

Patrick Ahern, Joaquim Bruna (1988)

Revista Matemática Iberoamericana

Similarity:

In this paper we deal with several characterizations of the Hardy-Sobolev spaces in the unit ball of C, that is, spaces of holomorphic functions in the ball whose derivatives up to a certain order belong to the classical Hardy spaces. Some of our characterizations are in terms of maximal functions, area functions or Littlewood-Paley functions involving only complex-tangential derivatives. A special case of our results is a characterization of H itself involving only complex-tangential...