Displaying similar documents to “Derivations of simple C * -algebras. II”

Operators preserving ideals in C*-algebras

V. Shul'Man (1994)

Studia Mathematica

Similarity:

The aim of this paper is to prove that derivations of a C*-algebra A can be characterized in the space of all linear continuous operators T : A → A by the conditions T(1) = 0, T(L∩R) ⊂ L + R for any closed left ideal L and right ideal R. As a corollary we get an extension of the result of Kadison [5] on local derivations in W*-algebras. Stronger results of this kind are proved under some additional conditions on the cohomologies of A.

On hyper BCC-algebras.

Borzooei, R.A., Dudek, W.A., Koohestani, N. (2006)

International Journal of Mathematics and Mathematical Sciences

Similarity:

On BF-algebras

Andrzej Walendziak (2007)

Mathematica Slovaca

Similarity:

Hyper BCI-algebras

Xiao Long Xin (2006)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

We introduce the concept of a hyper BCI-algebra which is a generalization of a BCI-algebra, and investigate some related properties. Moreover we introduce a hyper BCI-ideal, weak hyper BCI-ideal, strong hyper BCI-ideal and reflexive hyper BCI-ideal in hyper BCI-algebras, and give some relations among these hyper BCI-ideals. Finally we discuss the relations between hyper BCI-algebras and hyper groups, and between hyper BCI-algebras and hyper H v -groups.

Algebras of quotients with bounded evaluation of a normed semiprime algebra

M. Cabrera, Amir A. Mohammed (2003)

Studia Mathematica

Similarity:

We deal with the algebras consisting of the quotients that produce bounded evaluation on suitable ideals of the multiplication algebra of a normed semiprime algebra A. These algebras of quotients, which contain A, are subalgebras of the bounded algebras of quotients of A, and they have an algebra seminorm for which the relevant inclusions are continuous. We compute these algebras of quotients for some norm ideals on a Hilbert space H: 1) the algebras of quotients with bounded evaluation...