Displaying similar documents to “Arithmetic problems concerning Cauchy's functional equation”

On the inhomogeneous Cauchy functional equation.

István Fenyö, Gian Luigi Forti (1981)

Stochastica

Similarity:

In this note we solve the inhomogeneous Cauchy functional equation f(x+y) - f(x) - f(y) = d(x,y), x,y belonging to R, in the case where d is bounded.

A functional equation related to an equality of means problem

Janusz Matkowski (2011)

Colloquium Mathematicae

Similarity:

The functional equation (F(x)-F(y))/(x-y) = (G(x)+G(y))(H(x)+H(y)) where F,G,H are unknown functions is considered. Some motivations, coming from the equality problem for means, are presented.

Espacios de producto interno (II).

Palaniappan Kannappan (1995)

Mathware and Soft Computing

Similarity:

Among normal linear spaces, the inner product spaces (i.p.s.) are particularly interesting. Many characterizations of i.p.s. among linear spaces are known using various functional equations. Three functional equations characterizations of i.p.s. are based on the Frchet condition, the Jordan and von Neumann identity and the Ptolemaic inequality respectively. The object of this paper is to solve generalizations of these functional equations.