The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A generalization of the Enright-Varadarajan modules”

Classification of irreducible weight modules

Olivier Mathieu (2000)

Annales de l'institut Fourier

Similarity:

Let 𝔤 be a reductive Lie algebra and let 𝔥 be a Cartan subalgebra. A 𝔤 -module M is called a if and only if M = λ M λ , where each weight space M λ is finite dimensional. The main result of the paper is the classification of all simple weight 𝔤 -modules. Further, we show that their characters can be deduced from characters of simple modules in category 𝒪 .

Generalized Verma module homomorphisms in singular character

Peter Franek (2006)

Archivum Mathematicum

Similarity:

In this paper we study invariant differential operators on manifolds with a given parabolic structure. The model for the parabolic geometry is the quotient of the orthogonal group by a maximal parabolic subgroup corresponding to crossing of the k -th simple root of the Dynkin diagram. In particular, invariant differential operators discussed in the paper correspond (in a flat model) to the Dirac operator in several variables.