Generators and relations for as a monoidal 2-category.
Kock, Anders (1993)
Beiträge zur Algebra und Geometrie
Similarity:
Kock, Anders (1993)
Beiträge zur Algebra und Geometrie
Similarity:
Amnon Neeman (1992)
Annales scientifiques de l'École Normale Supérieure
Similarity:
J. Remedios-Gómez, S. Rodríguez-Machín (2001)
Extracta Mathematicae
Similarity:
Timothy Porter (1976)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Fritsch, Rudolf, Golasiński, Marek (1998)
Theory and Applications of Categories [electronic only]
Similarity:
Rosický, Jiří (2005)
Theory and Applications of Categories [electronic only]
Similarity:
Mandell, Michael A. (2010)
Documenta Mathematica
Similarity:
Francisco Díaz, Sergio Rodríguez-Machín (2006)
Open Mathematics
Similarity:
Generally, in homotopy theory a cylinder object (or, its dual, a path object) is used to define homotopy between morphisms, and a cone object is used to build exact sequences of homotopy groups. Here, an axiomatic theory based on a cone functor is given. Suspension objects are associated to based objects and cofibrations, obtaining homotopy groups referred to an object and relative to a cofibration, respectively. Exact sequences of these groups are built. Algebraic and particular examples...
Murray Heggie (1993)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity: