The solution of parabolic models by finite element space and -stable time discrezation
Nedoma, J.
Similarity:
Nedoma, J.
Similarity:
Palaniappan Kannappan (1995)
Mathware and Soft Computing
Similarity:
Among normal linear spaces, the inner product spaces (i.p.s.) are particularly interesting. Many characterizations of i.p.s. among linear spaces are known using various functional equations. Three functional equations characterizations of i.p.s. are based on the Frchet condition, the Jordan and von Neumann identity and the Ptolemaic inequality respectively. The object of this paper is to solve generalizations of these functional equations.
Arkhipova, Arina A.
Similarity:
Peter G. Casazza, Ole Christensen, Nigel J. Kalton (2001)
Collectanea Mathematica
Similarity:
Fiedler, Bernold
Similarity:
M. B. S. Laporta (1999)
Disertaciones Matemáticas del Seminario de Matemáticas Fundamentales
Similarity:
G. M. Nielson, D. J. Mangeron (1981)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Similarity:
D. Mangeron, L. E. Krivoshein, D. L. Fernández (1982)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Similarity:
Stará, Jana, John, Oldřich
Similarity: