Displaying similar documents to “Shape and topology optimization of the robust compliance via the level set method”

Multi-phase structural optimization via a level set method

G. Allaire, C. Dapogny, G. Delgado, G. Michailidis (2014)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider the optimal distribution of several elastic materials in a fixed working domain. In order to optimize both the geometry and topology of the mixture we rely on the level set method for the description of the interfaces between the different phases. We discuss various approaches, based on Hadamard method of boundary variations, for computing shape derivatives which are the key ingredients for a steepest descent algorithm. The shape gradient obtained for a sharp interface involves...

Shape and topology optimization of the robust compliance via the level set method

François Jouve, Grégoire Allaire, Frédéric de Gournay (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The goal of this paper is to study the so-called worst-case or robust optimal design problem for minimal compliance. In the context of linear elasticity we seek an optimal shape which minimizes the largest, or worst, compliance when the loads are subject to some unknown perturbations. We first prove that, for a fixed shape, there exists indeed a worst perturbation (possibly non unique) that we characterize as the maximizer of a nonlinear energy. We also propose a stable algorithm to...

An Optimum Design Problem in Magnetostatics

Antoine Henrot, Grégory Villemin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper, we are interested in finding the optimal shape of a magnet. The criterion to maximize is the jump of the electromagnetic field between two different configurations. We prove existence of an optimal shape into a natural class of domains. We introduce a quasi-Newton type algorithm which moves the boundary. This method is very efficient to improve an initial shape. We give some numerical results.