Displaying similar documents to “Unique continuation property near a corner and its fluid-structure controllability consequences”

Characterization of the limit load in the case of an unbounded elastic convex

Adnene Elyacoubi, Taieb Hadhri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this work we consider a solid body Ω 3 constituted by a nonhomogeneous elastoplastic material, submitted to a density of body forces λ f and a density of forces λ g acting on the boundary where the real λ is the loading parameter. The problem is to determine, in the case of an unbounded convex of elasticity, the Limit load denoted by λ ¯ beyond which there is a break of the structure. The case of a bounded convex of elasticity is done in [El-Fekih and Hadhri,   (1995) 391–419]. Then assuming...

On ergodic problem for Hamilton-Jacobi-Isaacs equations

Piernicola Bettiol (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study the asymptotic behavior of λ v λ as λ 0 + , where v λ is the viscosity solution of the following Hamilton-Jacobi-Isaacs equation (infinite horizon case) λ v λ + H ( x , D v λ ) = 0 , with H ( x , p ) : = min b B max a A { - f ( x , a , b ) · p - l ( x , a , b ) } . We discuss the cases in which the state of the system is required to stay in an -dimensional torus, called periodic boundary conditions, or in the closure of a bounded connected domain Ω n with sufficiently smooth boundary. As far as the latter is concerned, we treat both the case of the Neumann boundary conditions (reflection...

Lipschitz stability in the determination of the principal part of a parabolic equation

Ganghua Yuan, Masahiro Yamamoto (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Let be one solution to t y ( t , x ) - i , j = 1 n j ( a i j ( x ) i y ( t , x ) ) = h ( t , x ) , 0 < t < T , x Ω with a non-homogeneous term , and y | ( 0 , T ) × Ω = 0 , where Ω n is a bounded domain. We discuss an inverse problem of determining unknown functions by { ν y ( h ) | ( 0 , T ) × Γ 0 , y ( h ) ( θ , · ) } 1 0 after selecting input sources h 1 , . . . , h 0 suitably, where Γ 0 is an arbitrary subboundary, ν denotes the normal derivative, 0 < θ < T and 0 . In the case of 0 = ( n + 1 ) 2 n / 2 , we prove the Lipschitz stability in the inverse problem if we choose ( h 1 , . . . , h 0 ) from a set { C 0 ( ( 0 , T ) × ω ) } 0 with an arbitrarily fixed subdomain ω Ω . Moreover we can take 0 = ( n + 3 ) n / 2 by making special choices...