Limits in categories and limit-preserving functors
Věra Trnková (1966)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Věra Trnková (1966)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Adámek, J., Trenková, V. (2001)
Theory and Applications of Categories [electronic only]
Similarity:
Jiří Adámek, Jiří Rosický (2004)
Czechoslovak Mathematical Journal
Similarity:
In the theory of accessible categories, pure subobjects, i.e. filtered colimits of split monomorphisms, play an important role. Here we investigate pure quotients, i.e., filtered colimits of split epimorphisms. For example, in abelian, finitely accessible categories, these are precisely the cokernels of pure subobjects, and pure subobjects are precisely the kernels of pure quotients.
G. M. Kelly (1982)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
J. Adámek, H. Herrlich, G. E. Strecker (1979)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Krause, Henning (2001)
Documenta Mathematica
Similarity: