The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A test-set for k -power-free binary morphisms”

A generator of morphisms for infinite words

Pascal Ochem (2006)

RAIRO - Theoretical Informatics and Applications

Similarity:

We present an algorithm which produces, in some cases, infinite words avoiding both large fractional repetitions and a given set of finite words. We use this method to show that all the ternary patterns whose avoidability index was left open in Cassaigne's thesis are 2-avoidable. We also prove that there exist exponentially many 7 4 + -free ternary words and 7 5 + -free 4-ary words. Finally we give small morphisms for binary words containing only the squares , 1 and (01)² and for binary words...

On the distribution of characteristic parameters of words

Arturo Carpi, Aldo de Luca (2002)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Similarity:

For any finite word w on a finite alphabet, we consider the basic parameters R w and K w of w defined as follows: R w is the minimal natural number for which w has no right special factor of length R w and K w is the minimal natural number for which w has no repeated suffix of length K w . In this paper we study the distributions of these parameters, here called characteristic parameters, among the words of each length on a fixed alphabet.

Equations on partial words

Francine Blanchet-Sadri, D. Dakota Blair, Rebeca V. Lewis (2009)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Similarity:

It is well-known that some of the most basic properties of words, like the commutativity ( x y = y x ) and the conjugacy ( x z = z y ), can be expressed as solutions of word equations. An important problem is to decide whether or not a given equation on words has a solution. For instance, the equation x m y n = z p has only periodic solutions in a free monoid, that is, if x m y n = z p holds with integers m , n , p 2 , then there exists a word w such that x , y , z are powers of w . This result, which received a lot of attention, was first proved...