The eigenvalues of hypoelliptic operators
A. Menikoff, Johannes Sjöstrand (1977)
Journées équations aux dérivées partielles
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A. Menikoff, Johannes Sjöstrand (1977)
Journées équations aux dérivées partielles
Similarity:
Niels Joergen Kokholm (1989)
Journées équations aux dérivées partielles
Similarity:
Johannes Sjöstrand (1980)
Annales de l'institut Fourier
Similarity:
Let be a selfadjoint classical pseudo-differential operator of order with non-negative principal symbol on a compact manifold. We assume that is hypoelliptic with loss of one derivative and semibounded from below. Then exp, , is constructed as a non-classical Fourier integral operator and the main contribution to the asymptotic distribution of eigenvalues of is computed. This paper is a continuation of a series of joint works with A. Menikoff.
V. Ivrii (1990-1991)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Everitt, W.N., Marletta, M., Zettl, A. (2001)
Journal of Inequalities and Applications [electronic only]
Similarity:
Wojciech Czaja, Ziemowit Rzeszotnik (1999)
Colloquium Mathematicae
Similarity:
In this paper we show an asymptotic formula for the number of eigenvalues of a pseudodifferential operator. As a corollary we obtain a generalization of the result by Shubin and Tulovskiĭ about the Weyl asymptotic formula. We also consider a version of the Weyl formula for the quasi-classical asymptotics.
O. A. Olejnik (1989)
Journées équations aux dérivées partielles
Similarity:
Pushnitski, Alexander, Rozenblum, Grigori (2007)
Documenta Mathematica
Similarity: