Page 1 Next

Displaying 1 – 20 of 24

Showing per page

General construction of Banach-Grassmann algebras

Vladimir G. Pestov (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We show that a free graded commutative Banach algebra over a (purely odd) Banach space E is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if and only if E is infinite-dimensional. Thus, a large amount of new examples of separable Banach-Grassmann algebras arise in addition to the only one example previously known due to A. Rogers.

Generalization of p-regularity notion and tangent cone description in the singular case

Wiesław Grzegorczyk, Beata Medak, Alexey A. Tret’yakov (2012)

Annales UMCS, Mathematica

The theory of p-regularity has approximately twenty-five years’ history and many results have been obtained up to now. The main result of this theory is description of tangent cone to zero set in singular case. However there are numerous nonlinear objects for which the p-regularity condition fails, especially for p > 2. In this paper we generalize the p-regularity notion as a starting point for more detailed consideration based on different p-factor operators constructions.

Generalized gradients for locally Lipschitz integral functionals on non- L p -type spaces of measurable functions

Hôǹg Thái Nguyêñ, Dariusz Pączka (2008)

Banach Center Publications

Let (Ω,μ) be a measure space, E be an arbitrary separable Banach space, E * ω * be the dual equipped with the weak* topology, and g:Ω × E → ℝ be a Carathéodory function which is Lipschitz continuous on each ball of E for almost all s ∈ Ω. Put G ( x ) : = Ω g ( s , x ( s ) ) d μ ( s ) . Consider the integral functional G defined on some non- L p -type Banach space X of measurable functions x: Ω → E. We present several general theorems on sufficient conditions under which any element γ ∈ X* of Clarke’s generalized gradient (multivalued C-subgradient)...

Generators for algebras dense in L p -spaces

Alexander J. Izzo, Bo Li (2013)

Studia Mathematica

For various L p -spaces (1 ≤ p < ∞) we investigate the minimum number of complex-valued functions needed to generate an algebra dense in the space. The results depend crucially on the regularity imposed on the generators. For μ a positive regular Borel measure on a compact metric space there always exists a single bounded measurable function that generates an algebra dense in L p ( μ ) . For M a Riemannian manifold-with-boundary of finite volume there always exists a single continuous function that generates...

Geometry and representation of the singular symplectic forms

Wojciech Domitrz, Stanisław Janeczko, Zbigniew Pasternak-Winiarski (2003)

Banach Center Publications

In this paper we show to what extent the closed, singular 2-forms are represented, up to the smooth equivalence, by their restrictions to the corresponding singularity set. In the normalization procedure of the singularity set we find the sufficient conditions for the given closed 2-form to be a pullback of the classical Darboux form. We also find the classification list of simple singularities of the maximal isotropic submanifold-germs in the codimension one Martinet's singular symplectic structures....

Germes de difféomorphismes et de champs de vecteurs en classe de différentiabilité finie

F. Dumortier, Robert Roussarie (1983)

Annales de l'institut Fourier

Pour tout triplet d’entiers s , k , tels que 0 s k , se pose la question d’étudier les germes de difféomorphismes ou de champs de vecteurs sur R n , de classe , k -déterminés en classe s , c’est-à-dire respectivement conjugués ou équivalents en classe s , à tout germe ayant la même classe et le même k -jet. Cette question est abordée ici, avec quelque généralité en dimension 2 et pour les germes de champs de vecteurs de codimension 2, en dimension 3 et 4. Une conséquence de cette dernière étude est l’existence...

Currently displaying 1 – 20 of 24

Page 1 Next