Page 1

Displaying 1 – 7 of 7

Showing per page

New method for computation of discrete spectrum of radical Schrödinger operator

Ivan Úlehla, Miloslav Havlíček (1980)

Aplikace matematiky

A new method for computation of eigenvalues of the radial Schrödinger operator - d 2 / d x 2 + v ( x ) , x 0 is presented. The potential v ( x ) is assumed to behave as x - 2 + ϵ if x 0 + and as x - 2 - ϵ if x + , ϵ 0 . The Schrödinger equation is transformed to a non-linear differential equation of the first order for a function z ( x , ) . It is shown that the eigenvalues are the discontinuity points of the function z ( , ) . Moreover, it is shown how to obtain an arbitrarily accurate approximation of eigenvalues. The method seems to be much more economical in comparison...

Numerical precision for differential inclusions with uniqueness

Jérôme Bastien, Michelle Schatzman (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is 1 / 2 in general and 1 when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.

Numerical precision for differential inclusions with uniqueness

Jérôme Bastien, Michelle Schatzman (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is 1/2 in general and 1 when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl's rheological model, our estimates in maximum norm do not depend on spatial dimension. ...

Currently displaying 1 – 7 of 7

Page 1