Page 1

Displaying 1 – 5 of 5

Showing per page

A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations

Christophe Prud'homme, Dimitrios V. Rovas, Karen Veroy, Anthony T. Patera (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present in this article two components: these components can in fact serve various goals independently, though we consider them here as an ensemble. The first component is a technique for the rapid and reliable evaluation prediction of linear functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential features are (i) (provably) rapidly convergent global reduced–basis approximations — Galerkin projection onto a space W N spanned...

A Mathematical and Computational Framework for Reliable Real-Time Solution of Parametrized Partial Differential Equations

Christophe Prud'homme, Dimitrios V. Rovas, Karen Veroy, Anthony T. Patera (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present in this article two components: these components can in fact serve various goals independently, though we consider them here as an ensemble. The first component is a technique for the rapid and reliable evaluation prediction of linear functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential features are (i) (provably) rapidly convergent global reduced–basis approximations — Galerkin projection onto a space WN spanned...

A stochastic mirror-descent algorithm for solving A X B = C over an multi-agent system

Yinghui Wang, Songsong Cheng (2021)

Kybernetika

In this paper, we consider a distributed stochastic computation of A X B = C with local set constraints over an multi-agent system, where each agent over the network only knows a few rows or columns of matrixes. Through formulating an equivalent distributed optimization problem for seeking least-squares solutions of A X B = C , we propose a distributed stochastic mirror-descent algorithm for solving the equivalent distributed problem. Then, we provide the sublinear convergence of the proposed algorithm. Moreover,...

Analysis of multibackground memory testing techniques

Ireneusz Mrozek (2010)

International Journal of Applied Mathematics and Computer Science

March tests are widely used in the process of RAM testing. This family of tests is very efficient in the case of simple faults such as stuck-at or transition faults. In the case of a complex fault model-such as pattern sensitive faults-their efficiency is not sufficient. Therefore we have to use other techniques to increase fault coverage for complex faults. Multibackground memory testing is one of such techniques. In this case a selected March test is run many times. Each time it is run with new...

Currently displaying 1 – 5 of 5

Page 1