On the Reproducing Formula of Calderon.
We consider the boundedness of certain singular integral operators that arose in the study of Sobolev spaces on Lipschitz curves, [P1]. The standard theory available (David and Journé's T1 Theorem, for instance; see [D]) does not apply to this case becuase the operators are not necessarily Calderón-Zygmund operators, [Ch]. One of these operators gives an explicit formula for the resolvent at λ = 1 of the dyadic paraproduct, [Ch].
Two-sided estimates of Schatten-von Neumann norms for weighted Volterra integral operators are established. Analogous problems for some potential-type operators defined on Rn are solved.
The problem of strict convexity of the Besicovitch-Orlicz space of almost periodic functions is considered here in connection with the Orlicz norm. We give necessary and sufficient conditions in terms of the function f generating the space.
We give a new version of Ivasev-Musatov’s construction of a measure whose support has Lebesgue measure zero but whose Fourier transform drops away extremely rapidly.
As in Part I [Annales de l’Inst. Fourier, 27-3 (1997), 97-113], our object is to construct a measure whose support has Lebesgue measure zero, but whose Fourier transform drops away extremely fast.