The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 641 –
660 of
3651
We introduce the new class of Besicovitch-Musielak-Orlicz almost periodic functions and consider its strict convexity with respect to the Luxemburg norm.
We study the mapping property of the commutator of Hardy-Littlewood maximal function on Triebel-Lizorkin spaces. Also, some new characterizations of the Lipschitz spaces are given.
We give characterizations of orthogonal families, tight frames and orthonormal bases of Gabor systems. The conditions we propose are stated in terms of equations for the Fourier transforms of the Gabor system's generating functions.
Pisier's characterization of Sidon sets as containing proportional-sized quasi-independent subsets is given a sharper form for groups with only a finite number of elements having orders a power of 2. No such improvement is possible for a general Sidon subset of a group having an infinite number of elements of order 2. The method used also gives several sharper forms of Ramsey's characterization of Sidon sets as containing proportional-sized I₀-subsets in a uniform way, again in groups containing...
We characterize those anisotropic Sobolev spaces on tori in the and uniform norms for which the idempotent multipliers have a description in terms of the coset ring of the dual group. These results are deduced from more general theorems concerning invariant projections on vector-valued function spaces on tori. This paper is a continuation of the author’s earlier paper [W].
In his recent lecture at the International Congress [S], Stephen Semmes stated the following conjecture for which we provide a proof.Theorem. Suppose Ω is a bounded open set in Rn with n > 2, and suppose that B(0,1) ⊂ Ω, Hn-1(∂Ω) = M < ∞ (depending on n and M) and a Lipschitz graph Γ (with constant L) such that Hn-1(Γ ∩ ∂Ω) ≥ ε.Here Hk denotes k-dimensional Hausdorff measure and B(0,1) the unit ball in Rn. By iterating our proof we obtain a slightly stronger result which allows us...
A short survey of results on classical Franklin system, Ciesielski systems and general Franklin systems is given. The principal role of the investigations of Z. Ciesielski in the development of these three topics is presented. Recent results on general Franklin systems are discussed in more detail. Some open problems are posed.
In this contribution we deal with classical Jacobi polynomials orthogonal with respect to different weight functions, their special cases - classical Legendre polynomials and generalized brothers of them. We derive expressions of generalized Legendre polynomials and generalized ultraspherical polynomials by means of classical Jacobi polynomials.
Abstract. We study a Neumann problem for the heat equation in a cylindrical domain with -base and data in , a subspace of 1. We derive our results, considering the action of an adjoint operator on , a predual of , and using known properties of this last space.
In the Fourier theory of functions of one variable, it is common to extend a function and its Fourier transform holomorphically to domains in the complex plane C, and to use the power of complex function theory. This depends on first extending the exponential function eixξ of the real variables x and ξ to a function eizζ which depends holomorphically on both the complex variables z and ζ .Our thesis is this. The natural analog in higher dimensions is to extend a function of m real variables monogenically...
Cotangent type functions in Rn are used to construct Cauchy kernels and Green kernels on the conformally flat manifolds Rn/Zk where 1 < = k ≤ M. Basic properties of these kernels are discussed including introducing a Cauchy formula, Green's formula, Cauchy transform, Poisson kernel, Szegö kernel and Bergman kernel for certain types of domains. Singular Cauchy integrals are also introduced as are associated Plemelj projection operators. These in turn are used to study Hardy spaces in this...
Currently displaying 641 –
660 of
3651