Previous Page 16

Displaying 301 – 315 of 315

Showing per page

Asymptotic behavior of the invariant measure for a diffusion related to an NA group

Ewa Damek, Andrzej Hulanicki (2006)

Colloquium Mathematicae

On a Lie group NA that is a split extension of a nilpotent Lie group N by a one-parameter group of automorphisms A, the heat semigroup μ t generated by a second order subelliptic left-invariant operator j = 0 m Y j + Y is considered. Under natural conditions there is a μ ̌ t -invariant measure m on N, i.e. μ ̌ t * m = m . Precise asymptotics of m at infinity is given for a large class of operators with Y₀,...,Yₘ generating the Lie algebra of S.

Asymptotic spherical analysis on the Heisenberg group

Jacques Faraut (2010)

Colloquium Mathematicae

The asymptotics of spherical functions for large dimensions are related to spherical functions for Olshanski spherical pairs. In this paper we consider inductive limits of Gelfand pairs associated to the Heisenberg group. The group K = U(n) × U(p) acts multiplicity free on 𝓟(V), the space of polynomials on V = M(n,p;ℂ), the space of n × p complex matrices. The group K acts also on the Heisenberg group H = V × ℝ. By a result of Carcano, the pair (G,K) with G = K ⋉ H is a Gelfand pair. The main results...

Automatic continuity of operators commuting with translations

J. Alaminos, J. Extremera, A. R. Villena (2006)

Studia Mathematica

Let τ X and τ Y be representations of a topological group G on Banach spaces X and Y, respectively. We investigate the continuity of the linear operators Φ: X → Y with the property that Φ τ X ( t ) = τ Y ( t ) Φ for each t ∈ G in terms of the invariant vectors in Y and the automatic continuity of the invariant linear functionals on X.

Automorphisms and derivations of a Fréchet algebra of locally integrable functions

F. Ghahramani, J. McClure (1992)

Studia Mathematica

We find representations for the automorphisms, derivations and multipliers of the Fréchet algebra L ¹ l o c of locally integrable functions on the half-line + . We show, among other things, that every automorphism θ of L ¹ l o c is of the form θ = φ a e λ X e D , where D is a derivation, X is the operator of multiplication by coordinate, λ is a complex number, a > 0, and φ a is the dilation operator ( φ a f ) ( x ) = a f ( a x ) ( f L ¹ l o c , x + ). It is also shown that the automorphism group is a topological group with the topology of uniform convergence on bounded...

Averages of unitary representations and weak mixing of random walks

Michael Lin, Rainer Wittmann (1995)

Studia Mathematica

Let S be a locally compact (σ-compact) group or semigroup, and let T(t) be a continuous representation of S by contractions in a Banach space X. For a regular probability μ on S, we study the convergence of the powers of the μ-average Ux = ʃ T(t)xdμ(t). Our main results for random walks on a group G are: (i) The following are equivalent for an adapted regular probability on G: μ is strictly aperiodic; U n converges weakly for every continuous unitary representation of G; U is weakly mixing for any...

Currently displaying 301 – 315 of 315

Previous Page 16