Arithmeticity of the irreducible lattices in the semi-simple groups of rank greater than 1.
On a Lie group NA that is a split extension of a nilpotent Lie group N by a one-parameter group of automorphisms A, the heat semigroup generated by a second order subelliptic left-invariant operator is considered. Under natural conditions there is a -invariant measure m on N, i.e. . Precise asymptotics of m at infinity is given for a large class of operators with Y₀,...,Yₘ generating the Lie algebra of S.
The asymptotics of spherical functions for large dimensions are related to spherical functions for Olshanski spherical pairs. In this paper we consider inductive limits of Gelfand pairs associated to the Heisenberg group. The group K = U(n) × U(p) acts multiplicity free on 𝓟(V), the space of polynomials on V = M(n,p;ℂ), the space of n × p complex matrices. The group K acts also on the Heisenberg group H = V × ℝ. By a result of Carcano, the pair (G,K) with G = K ⋉ H is a Gelfand pair. The main results...
Let and be representations of a topological group G on Banach spaces X and Y, respectively. We investigate the continuity of the linear operators Φ: X → Y with the property that for each t ∈ G in terms of the invariant vectors in Y and the automatic continuity of the invariant linear functionals on X.
We find representations for the automorphisms, derivations and multipliers of the Fréchet algebra of locally integrable functions on the half-line . We show, among other things, that every automorphism θ of is of the form , where D is a derivation, X is the operator of multiplication by coordinate, λ is a complex number, a > 0, and is the dilation operator (, ). It is also shown that the automorphism group is a topological group with the topology of uniform convergence on bounded...
Let S be a locally compact (σ-compact) group or semigroup, and let T(t) be a continuous representation of S by contractions in a Banach space X. For a regular probability μ on S, we study the convergence of the powers of the μ-average Ux = ʃ T(t)xdμ(t). Our main results for random walks on a group G are: (i) The following are equivalent for an adapted regular probability on G: μ is strictly aperiodic; converges weakly for every continuous unitary representation of G; U is weakly mixing for any...