A note on negative tagging for least fixed-point formulae
Proof systems with sequents of the form U ⊢ Φ for proving validity of a propositional modal μ-calculus formula Φ over a set U of states in a given model usually handle fixed-point formulae through unfolding, thus allowing such formulae to reappear in a proof. Tagging is a technique originated by Winskel for annotating fixed-point formulae with information about the proof states at which these are unfolded. This information is used later in the proof to avoid unnecessary unfolding, without...
In this paper the computational complexity of the problem of the approximation of a given dissimilarity measure on a finite set by a -ultrametric on and by a Robinson dissimilarity measure on is investigared. It is shown that the underlying decision problems are NP-complete.
In this note, we strengthen the inapproximation bound of O(logn) for the labeled perfect matching problem established in J. Monnot, The Labeled perfect matching in bipartite graphs, Information Processing Letters96 (2005) 81–88, using a self improving operation in some hard instances. It is interesting to note that this self improving operation does not work for all instances. Moreover, based on this approach we deduce that the problem does not admit constant approximation algorithms for connected...
A well known result of Fraenkel and Simpson states that the number of distinct squares in a word of length n is bounded by 2n since at each position there are at most two distinct squares whose last occurrence starts. In this paper, we investigate squares in partial words with one hole, or sequences over a finite alphabet that have a “do not know” symbol or “hole”. A square in a partial word over a given alphabet has the form uv where u is compatible with v, and consequently, such square is...