Checking positive definiteness or stability of symmetric interval matrices is NP-hard
It is proved that checking positive definiteness, stability or nonsingularity of all [symmetric] matrices contained in a symmetric interval matrix is NP-hard.
It is proved that checking positive definiteness, stability or nonsingularity of all [symmetric] matrices contained in a symmetric interval matrix is NP-hard.
Circular splicing has been very recently introduced to model a specific recombinant behaviour of circular DNA, continuing the investigation initiated with linear splicing. In this paper we restrict our study to the relationship between regular circular languages and languages generated by finite circular splicing systems and provide some results towards a characterization of the intersection between these two classes. We consider the class of languages , called here star languages, which are closed...
Circular splicing has been very recently introduced to model a specific recombinant behaviour of circular DNA, continuing the investigation initiated with linear splicing. In this paper we restrict our study to the relationship between regular circular languages and languages generated by finite circular splicing systems and provide some results towards a characterization of the intersection between these two classes. We consider the class of languages X*, called here star languages, which are closed...
The paper deals with some classes of two-dimensional recognizable languages of “high complexity”, in a sense specified in the paper and motivated by some necessary conditions holding for recognizable and unambiguous languages. For such classes we can solve some open questions related to unambiguity, finite ambiguity and complementation. Then we reformulate a necessary condition for recognizability stated by Matz, introducing a new complexity function. We solve an open question proposed by Matz,...
The paper deals with some classes of two-dimensional recognizable languages of “high complexity”, in a sense specified in the paper and motivated by some necessary conditions holding for recognizable and unambiguous languages. For such classes we can solve some open questions related to unambiguity, finite ambiguity and complementation. Then we reformulate a necessary condition for recognizability stated by Matz, introducing a new complexity function. We solve an open question proposed by Matz,...
An interesting topic in the ring theory is the classification of finite rings. Although rings of certain orders have already been classified, a full description of all rings of a given order remains unknown. The purpose of this paper is to classify all finite rings (up to isomorphism) of a given order. In doing so, we introduce a new concept of quasi basis for certain type of modules, which is a useful computational tool for dealing with finite rings. Then, using this concept, we give structure...
We present some novel classification results in quasigroup and loop theory. For quasigroups up to size 5 and loops up to size 7, we describe a unique property which determines the isomorphism (and in the case of loops, the isotopism) class for any example. These invariant properties were generated using a variety of automated techniques --- including machine learning and computer algebra --- which we present here. Moreover, each result has been automatically verified, again using a variety of techniques...
Intrusion detection is a critical component of security information systems. The intrusion detection process attempts to detect malicious attacks by examining various data collected during processes on the protected system. This paper examines the anomaly-based intrusion detection based on sequences of system calls. The point is to construct a model that describes normal or acceptable system activity using the classification trees approach. The created database is utilized as a basis for distinguishing...