Die mit Nestedstackautomaten berechenbaren Funktionen sind elementar.
We present several solutions to the Firing Squad Synchronization Problem on grid networks of different shapes. The nodes are finite state processors that work in unison with other processors and in synchronized discrete steps. The networks we deal with are: the line, the ring and the square. For all of these models we consider one- and two-way communication modes and we also constrain the quantity of information that adjacent processors can exchange at each step. We first present synchronization...
In this paper, we focus on some specific optimization problems from graph theory, those for which all feasible solutions have an equal size that depends on the instance size. Once having provided a formal definition of this class of problems, we try to extract some of its basic properties; most of these are deduced from the equivalence, under differential approximation, between two versions of a problem which only differ on a linear transformation of their objective functions. This is notably...
In this paper, we focus on some specific optimization problems from graph theory, those for which all feasible solutions have an equal size that depends on the instance size. Once having provided a formal definition of this class of problems, we try to extract some of its basic properties; most of these are deduced from the equivalence, under differential approximation, between two versions of a problem π which only differ on a linear transformation of their objective functions. This is notably...
In this paper, we consider a possible representation of a DNA sequence in a quaternary tree, in which one can visualize repetitions of subwords (seen as suffixes of subsequences). The CGR-tree turns a sequence of letters into a Digital Search Tree (DST), obtained from the suffixes of the reversed sequence. Several results are known concerning the height, the insertion depth for DST built from independent successive random sequences having the same distribution. Here the successive inserted words...
Curvature is a continuous and infinitesimal notion. These properties induce geometrical difficulties in digital frameworks, and the following question is naturally asked: “How to define and compute curvatures of digital shapes?” In fact, not only geometrical but also topological difficulties are also induced in digital frameworks. The – deeper – question thus arises: “Can we still define and compute curvatures?” This latter question, that is relevant in the context of digitization, i.e., when passing...
We describe an ongoing project carried out by the Mathematical Institute of Serbian Academy of Sciences and Arts, and the Faculty of Mathematics, Belgrade. The project concerns building of electronic resources and presentations of electronic editions of mathematical works in Serbia, including retro-digitization of old books, articles and the other mathematical works, and development of the corresponding virtual library. The resources built in the project are freely accessible through Internet.
We obtain new results regarding the precise average-case analysis of the main quantities that intervene in algorithms of a broad Euclidean type. We develop a general framework for the analysis of such algorithms, where the average-case complexity of an algorithm is related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithms. The methods rely on properties of transfer operators suitably adapted from dynamical systems theory and provide...
The direct adaptive regulation for affine in the control nonlinear dynamical systems possessing unknown nonlinearities, is considered in this paper. The method is based on a new Neuro-Fuzzy Dynamical System definition, which uses the concept of Fuzzy Dynamical Systems (FDS) operating in conjunction with High Order Neural Network Functions (F-HONNFs). Since the plant is considered unknown, we first propose its approximation by a special form of a fuzzy dynamical system (FDS) and in the sequel the...
This paper is devoted to computational problems related to Markov chains (MC) on a finite state space. We present formulas and bounds for characteristics of MCs using directed forest expansions given by the Matrix Tree Theorem. These results are applied to analysis of direct methods for solving systems of linear equations, aggregation algorithms for nearly completely decomposable MCs and the Markov chain Monte Carlo procedures.