Construction de métriques d’Einstein à partir de transformations biconformes
- [1] Université de Bretagne Occidentale, Laboratoire de Mathématiques (UMR 6205), 6 avenue Victor Le Gorgeu, 29238 BREST Cedex 3, France.
Annales de la faculté des sciences de Toulouse Mathématiques (2006)
- Volume: 15, Issue: 3, page 553-588
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- L. Bérard-Bergery, Sur de nouvelles variétés d’Einstein, Publications de l’Institut E. Cartan (Nancy) 4 (1982), 1-60 Zbl0544.53038MR727843
- A. Bernard, E. A. Campbell, A. M. Davie, Brownian motion and generalized analytic and inner functions, Ann. Inst. Fourier (Grenoble) 29 (1979), 207-228 Zbl0386.30029MR526785
- A. L. Besse, Einstein Manifolds, 10 (1987), Springer Zbl0613.53001MR867684
- P. Baird, J. C. Wood, Harmonic morphisms between Riemannian manifolds, (2003), London Math. Soc. Monogr.(N.S.) Zbl1055.53049MR2044031
- B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), 107-144 Zbl0339.53026MR499588
- G. W. Gibbons, S. W. Hawking, Gravitational multi-instantons, Phys. Lett. B. 78 (1978), 430-2
- S. Gudmundsson, On the geometry of harmonic morphisms, Math. Proc. Cambridge Philos. Soc. 108 (1990), 461-466 Zbl0715.53029MR1068448
- S. Gudmundsson, The geometry of harmonic morphisms, (1990) Zbl0715.53029MR1068448
- E. Hebey, Introduction à l’analyse non linéaire sur les variétés, (1997), Diderot Zbl0918.58001
- M. W. Hirsch, S. Smale, Differential equations, dynamical systems and linear algebra, (1974), Academic Press, New York Zbl0309.34001MR486784
- T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto. Univ. 19 (1979), 215-229 Zbl0421.31006MR545705
- X. Mo, On the geometry of horizontally homothetic maps and harmonics morphisms, Adv. Math. Beijing 23 (1994), 282-283 Zbl0846.53023
- R. Pantilie, Harmonic morphisms with one-dimensional fibres, Internat. J. Math. 10 (1999), 457-501 Zbl0966.53044MR1697618
- R. Pantilie, Harmonic morphisms with one-dimensional fibres on 4-dimensional Einstein manifolds, Comm. Anal. Geom. 10 (2002), 779-814 Zbl1028.53067MR1925502
- R. Pantilie, J. C. Wood, Harmonic mrophisms with one-dimensional fibres on Einstein manifolds, Trans. Amer. Math. Soc. 354 (2002), 4229-4243 Zbl1010.58013MR1926872