Harmonic morphisms between riemannian manifolds

Bent Fuglede

Annales de l'institut Fourier (1978)

  • Volume: 28, Issue: 2, page 107-144
  • ISSN: 0373-0956

Abstract

top
A harmonic morphism f : M N between Riemannian manifolds M and N is by definition a continuous mappings which pulls back harmonic functions. It is assumed that dim M dim N , since otherwise every harmonic morphism is constant. It is shown that a harmonic morphism is the same as a harmonic mapping in the sense of Eells and Sampson with the further property of being semiconformal, that is, a conformal submersion of the points where d f vanishes. Every non-constant harmonic morphism is shown to be an open mapping.

How to cite

top

Fuglede, Bent. "Harmonic morphisms between riemannian manifolds." Annales de l'institut Fourier 28.2 (1978): 107-144. <http://eudml.org/doc/74351>.

@article{Fuglede1978,
abstract = {A harmonic morphism $f : M\rightarrow N$ between Riemannian manifolds $M$ and $N$ is by definition a continuous mappings which pulls back harmonic functions. It is assumed that dim$M\ge $ dim$N$, since otherwise every harmonic morphism is constant. It is shown that a harmonic morphism is the same as a harmonic mapping in the sense of Eells and Sampson with the further property of being semiconformal, that is, a conformal submersion of the points where $df$ vanishes. Every non-constant harmonic morphism is shown to be an open mapping.},
author = {Fuglede, Bent},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {107-144},
publisher = {Association des Annales de l'Institut Fourier},
title = {Harmonic morphisms between riemannian manifolds},
url = {http://eudml.org/doc/74351},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Fuglede, Bent
TI - Harmonic morphisms between riemannian manifolds
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 2
SP - 107
EP - 144
AB - A harmonic morphism $f : M\rightarrow N$ between Riemannian manifolds $M$ and $N$ is by definition a continuous mappings which pulls back harmonic functions. It is assumed that dim$M\ge $ dim$N$, since otherwise every harmonic morphism is constant. It is shown that a harmonic morphism is the same as a harmonic mapping in the sense of Eells and Sampson with the further property of being semiconformal, that is, a conformal submersion of the points where $df$ vanishes. Every non-constant harmonic morphism is shown to be an open mapping.
LA - eng
UR - http://eudml.org/doc/74351
ER -

References

top
  1. [1] N. ARONSZAJN, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl., 36 (1957), 235-249. Zbl0084.30402MR19,1056c
  2. [2] J.-M. BONY, Détermination des axiomatiques de théorie du potentiel dont les fonctions harmoniques sont différentiables, Ann. Inst. Fourier, 17, 1 (1967), 353-382. Zbl0164.14003MR36 #4012
  3. [3] N. CIORANESCO, Sur les fonctions harmoniques conjuguées, Bull. Sc. Math., 56 (1932), 55-64. Zbl0003.34701JFM58.0502.04
  4. [4] C. CONSTANTINESCU and A. CORNEA, Compactifications of harmonic spaces. Nagoya Math. J., 25 (1965), 1-57. Zbl0138.36701MR30 #4960
  5. [5] C. CONSTANTINESCU and A. CORNEA, Potential Theory on Harmonic Spaces, Berlin-Heidelberg-New York : Springer 1972. Zbl0248.31011MR54 #7817
  6. [6] H. O. CORDES, Uber die Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. IIa, Nr. 11 (1956), 239-258. Zbl0074.08002
  7. [7] J. EELLS, jr. and J. H. SAMPSON, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. Zbl0122.40102MR29 #1603
  8. [8] R. E. GREENE and H. WU, Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier, Grenoble, 25, 1 (1975), 215-235. Zbl0307.31003MR52 #3583
  9. [9] R.-M. HERVÉ, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, Grenoble, 12 (1962), 415-571. Zbl0101.08103MR25 #3186
  10. [10] O. D. KELLOGG, Foundations of potential theory, Berlin, Springer, 1929 (re-issued 1967). Zbl0152.31301JFM55.0282.01
  11. [11] J. LIOUVILLE, Note VI, p. 609-616 in G. Monge : Applications de l'Analyse à la Géométrie, 5e éd., Paris, 1850. 
  12. [12] Yu G. REŠETNJAK, O konformnyk otobrazenijah prostanstva. (Russian.) (On conformal mappings in space), Dokl. Akad. Nauk SSSR, 130 (1960), 1196-1198. (Sovjet Math., 1 (1960), 153-155.) Zbl0099.37901
  13. [13] A. SARD, Images of critical sets, Ann. Math., 68 (1958), 247-259. Zbl0084.05204MR20 #6499
  14. [14] D. SIBONY, Allure à la frontière minimale d'une classe de transformations. Théorème de Doob généralisé, Ann. Inst. Fourier, Grenoble, 18, 2 (1968), 91-120. Zbl0182.15002MR40 #395

Citations in EuDML Documents

top
  1. Laurent Danielo, Construction de métriques d’Einstein à partir de transformations biconformes
  2. A. Mohammed Cherif, Djaa Mustapha, On generalized f -harmonic morphisms
  3. Mohamed Tahar Kadaoui Abbassi, Ibrahim Lakrini, On the completeness of total spaces of horizontally conformal submersions
  4. Jean-Marie Burel, Almost symplectic structures and harmonic morphisms
  5. R. W. R. Darling, Martingales in manifolds. Definition, examples and behaviour under maps
  6. Bernt Oksendal, L. Csink, Stochastic harmonic morphisms : functions mapping the paths of one diffusion into the paths of another
  7. Frédérique Duheille, Une preuve probabiliste élémentaire d'un résultat de P. Baird et J. C. Wood
  8. Paul Baird, Harmonic morphisms onto Riemann surfaces and generalized analytic functions
  9. Kwang Soon Park, H-conformal anti-invariant submersions from almost quaternionic Hermitian manifolds
  10. Mustapha Chadli, Mohamed El Kadiri, Sabah Haddad, Biharmonic morphisms

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.