Short-time heat flow and functions of bounded variation in
Michele Miranda[1]; Diego Pallara[1]; Fabio Paronetto[1]; Marc Preunkert[2]
- [1] Dipartimento di Matematica “Ennio De Giorgi”, Università di Lecce, C.P.193, 73100, Lecce, Italy
- [2] Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany.
Annales de la faculté des sciences de Toulouse Mathématiques (2007)
- Volume: 16, Issue: 1, page 125-145
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topMiranda, Michele, et al. "Short-time heat flow and functions of bounded variation in $\mathbf{R}^N$." Annales de la faculté des sciences de Toulouse Mathématiques 16.1 (2007): 125-145. <http://eudml.org/doc/10026>.
@article{Miranda2007,
abstract = {We prove a characterisation of sets with finite perimeter and $BV$ functions in terms of the short time behaviour of the heat semigroup in $\{\bf R\}^N$. For sets with smooth boundary a more precise result is shown.},
affiliation = {Dipartimento di Matematica “Ennio De Giorgi”, Università di Lecce, C.P.193, 73100, Lecce, Italy; Dipartimento di Matematica “Ennio De Giorgi”, Università di Lecce, C.P.193, 73100, Lecce, Italy; Dipartimento di Matematica “Ennio De Giorgi”, Università di Lecce, C.P.193, 73100, Lecce, Italy; Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany.},
author = {Miranda, Michele, Pallara, Diego, Paronetto, Fabio, Preunkert, Marc},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {heat semigroup in },
language = {eng},
number = {1},
pages = {125-145},
publisher = {Université Paul Sabatier, Toulouse},
title = {Short-time heat flow and functions of bounded variation in $\mathbf\{R\}^N$},
url = {http://eudml.org/doc/10026},
volume = {16},
year = {2007},
}
TY - JOUR
AU - Miranda, Michele
AU - Pallara, Diego
AU - Paronetto, Fabio
AU - Preunkert, Marc
TI - Short-time heat flow and functions of bounded variation in $\mathbf{R}^N$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 1
SP - 125
EP - 145
AB - We prove a characterisation of sets with finite perimeter and $BV$ functions in terms of the short time behaviour of the heat semigroup in ${\bf R}^N$. For sets with smooth boundary a more precise result is shown.
LA - eng
KW - heat semigroup in
UR - http://eudml.org/doc/10026
ER -
References
top- L. Ambrosio.— Transport equation and Cauchy problem for vector fields, Invent. Math. 158, p. 227-260 (2004). Zbl1075.35087MR2096794
- L. Ambrosio, N. Fusco, D. Pallara.— Functions of Bounded Variation and Free Discontinuity problems, Oxford U. P., 2000. Zbl0957.49001MR1857292
- H. Brézis.— How to recognize constant functions. Connections with Sobolev spaces,Russian Math. Surveys 57, p. 693-708 (2002). Zbl1072.46020MR1942116
- J. Dávila.— On an open question about functions of bounded variation,Calc. Var. 15, p. 519-527 (2002). Zbl1047.46025MR1942130
- E. De Giorgi.— Su una teoria generale della misura -dimensionale in uno spazio ad dimensioni,Ann. Mat. Pura Appl. (4) 36, p. 191-213 (1954). Zbl0055.28504MR62214
- E. De Giorgi.— Nuovi teoremi relativi alle misure -dimensionali in uno spazio ad dimensioni, Ric. di Mat.4, p. 95–113 (1955). Zbl0066.29903MR74499
- P. Gilkey, M. van den Berg.— Heat content asymptotics of a Riemannian manifold with boundary, J. Funct. Anal. 120, p. 48-71 (1994). Zbl0809.53047MR1262245
- M. Ledoux.— Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space, Bull. Sci. Math. 118, p. 485-510 (1994). Zbl0841.49024MR1309086
- E.H. Lieb, M. Loss.— Analysis, Second edition, Amer. Math. Soc., 2001 Zbl0966.26002MR1817225
- M. Miranda (Jr), D. Pallara, F. Paronetto, M. Preunkert.— Heat Semigroup and Functions on Riemannian Manifolds, forthcoming.
- K. Pietruska-Paluba.— Heat kernels on metric spaces and a characterisation of constant functions, Manuscripta Math. 115 , p. 389–399 (2004). Zbl1062.60076MR2102059
- M. Preunkert.— A semigroup version of the isoperimetric inequality, Semigroup Forum 68, p. 233-245 (2004). Zbl1093.47042MR2036625
- M. H. Taibleson.— On the theory of Lipschitz spaces of distributions on Euclidean -spaces I, J. Math. Mech. 13, p. 407-479 (1964). Zbl0132.09402MR163159
- H. Triebel.— Interpolation theory, function spaces, differential operators, North-Holland 1978. Zbl0387.46032MR503903
- J. Wloka.— Partial Differential Equations, Cambridge U. P., 1987. Zbl0623.35006MR895589
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.