Short-time heat flow and functions of bounded variation in R N

Michele Miranda[1]; Diego Pallara[1]; Fabio Paronetto[1]; Marc Preunkert[2]

  • [1] Dipartimento di Matematica “Ennio De Giorgi”, Università di Lecce, C.P.193, 73100, Lecce, Italy
  • [2] Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany.

Annales de la faculté des sciences de Toulouse Mathématiques (2007)

  • Volume: 16, Issue: 1, page 125-145
  • ISSN: 0240-2963

Abstract

top
We prove a characterisation of sets with finite perimeter and B V functions in terms of the short time behaviour of the heat semigroup in R N . For sets with smooth boundary a more precise result is shown.

How to cite

top

Miranda, Michele, et al. "Short-time heat flow and functions of bounded variation in $\mathbf{R}^N$." Annales de la faculté des sciences de Toulouse Mathématiques 16.1 (2007): 125-145. <http://eudml.org/doc/10026>.

@article{Miranda2007,
abstract = {We prove a characterisation of sets with finite perimeter and $BV$ functions in terms of the short time behaviour of the heat semigroup in $\{\bf R\}^N$. For sets with smooth boundary a more precise result is shown.},
affiliation = {Dipartimento di Matematica “Ennio De Giorgi”, Università di Lecce, C.P.193, 73100, Lecce, Italy; Dipartimento di Matematica “Ennio De Giorgi”, Università di Lecce, C.P.193, 73100, Lecce, Italy; Dipartimento di Matematica “Ennio De Giorgi”, Università di Lecce, C.P.193, 73100, Lecce, Italy; Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany.},
author = {Miranda, Michele, Pallara, Diego, Paronetto, Fabio, Preunkert, Marc},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {heat semigroup in },
language = {eng},
number = {1},
pages = {125-145},
publisher = {Université Paul Sabatier, Toulouse},
title = {Short-time heat flow and functions of bounded variation in $\mathbf\{R\}^N$},
url = {http://eudml.org/doc/10026},
volume = {16},
year = {2007},
}

TY - JOUR
AU - Miranda, Michele
AU - Pallara, Diego
AU - Paronetto, Fabio
AU - Preunkert, Marc
TI - Short-time heat flow and functions of bounded variation in $\mathbf{R}^N$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 1
SP - 125
EP - 145
AB - We prove a characterisation of sets with finite perimeter and $BV$ functions in terms of the short time behaviour of the heat semigroup in ${\bf R}^N$. For sets with smooth boundary a more precise result is shown.
LA - eng
KW - heat semigroup in
UR - http://eudml.org/doc/10026
ER -

References

top
  1. L. Ambrosio.— Transport equation and Cauchy problem for B V vector fields, Invent. Math. 158, p. 227-260 (2004). Zbl1075.35087MR2096794
  2. L. Ambrosio, N. Fusco, D. Pallara.— Functions of Bounded Variation and Free Discontinuity problems, Oxford U. P., 2000. Zbl0957.49001MR1857292
  3. H. Brézis.— How to recognize constant functions. Connections with Sobolev spaces,Russian Math. Surveys 57, p. 693-708 (2002). Zbl1072.46020MR1942116
  4. J. Dávila.— On an open question about functions of bounded variation,Calc. Var. 15, p. 519-527 (2002). Zbl1047.46025MR1942130
  5. E. De Giorgi.— Su una teoria generale della misura ( r - 1 ) -dimensionale in uno spazio ad r dimensioni,Ann. Mat. Pura Appl. (4) 36, p. 191-213 (1954). Zbl0055.28504MR62214
  6. E. De Giorgi.— Nuovi teoremi relativi alle misure ( r - 1 ) -dimensionali in uno spazio ad r dimensioni, Ric. di Mat.4, p. 95–113 (1955). Zbl0066.29903MR74499
  7. P. Gilkey, M. van den Berg.— Heat content asymptotics of a Riemannian manifold with boundary, J. Funct. Anal. 120, p. 48-71 (1994). Zbl0809.53047MR1262245
  8. M. Ledoux.— Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space, Bull. Sci. Math. 118, p. 485-510 (1994). Zbl0841.49024MR1309086
  9. E.H. Lieb, M. Loss.— Analysis, Second edition, Amer. Math. Soc., 2001 Zbl0966.26002MR1817225
  10. M. Miranda (Jr), D. Pallara, F. Paronetto, M. Preunkert.— Heat Semigroup and B V Functions on Riemannian Manifolds, forthcoming. 
  11. K. Pietruska-Paluba.— Heat kernels on metric spaces and a characterisation of constant functions, Manuscripta Math. 115 , p. 389–399 (2004). Zbl1062.60076MR2102059
  12. M. Preunkert.— A semigroup version of the isoperimetric inequality, Semigroup Forum 68, p. 233-245 (2004). Zbl1093.47042MR2036625
  13. M. H. Taibleson.— On the theory of Lipschitz spaces of distributions on Euclidean n -spaces I, J. Math. Mech. 13, p. 407-479 (1964). Zbl0132.09402MR163159
  14. H. Triebel.— Interpolation theory, function spaces, differential operators, North-Holland 1978. Zbl0387.46032MR503903
  15. J. Wloka.— Partial Differential Equations, Cambridge U. P., 1987. Zbl0623.35006MR895589

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.