Some Fine Properties of BV Functions on Wiener Spaces

Luigi Ambrosio; Michele Miranda Jr.; Diego Pallara

Analysis and Geometry in Metric Spaces (2015)

  • Volume: 3, Issue: 1, page 212-230, electronic only
  • ISSN: 2299-3274

Abstract

top
In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.

How to cite

top

Luigi Ambrosio, Michele Miranda Jr., and Diego Pallara. "Some Fine Properties of BV Functions on Wiener Spaces." Analysis and Geometry in Metric Spaces 3.1 (2015): 212-230, electronic only. <http://eudml.org/doc/271753>.

@article{LuigiAmbrosio2015,
abstract = {In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.},
author = {Luigi Ambrosio, Michele Miranda Jr., Diego Pallara},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {Wiener space; functions of bounded variation},
language = {eng},
number = {1},
pages = {212-230, electronic only},
title = {Some Fine Properties of BV Functions on Wiener Spaces},
url = {http://eudml.org/doc/271753},
volume = {3},
year = {2015},
}

TY - JOUR
AU - Luigi Ambrosio
AU - Michele Miranda Jr.
AU - Diego Pallara
TI - Some Fine Properties of BV Functions on Wiener Spaces
JO - Analysis and Geometry in Metric Spaces
PY - 2015
VL - 3
IS - 1
SP - 212
EP - 230, electronic only
AB - In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.
LA - eng
KW - Wiener space; functions of bounded variation
UR - http://eudml.org/doc/271753
ER -

References

top
  1. [1] Alberti, C. Mantegazza, A note on the theory of SBV functions, Boll. Un. Mat. Ital. B (7) 11 (1997), n.2, 375–382.  Zbl0877.49001
  2. [2] L. Ambrosio, A. Figalli, Surface measure and convergence of the Ornstein-Uhlenbeck semigroup inWiener spaces, Ann. Fac. Sci. Toulouse Math., 20(2011) 407-438.  Zbl1228.60063
  3. [3] L. Ambrosio, A. Figalli, E. Runa, On sets of finite perimeter in Wiener spaces: reduced boundary and convergence to halfspaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 24(2013), 111-122. [WoS] Zbl1282.28002
  4. [4] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, 2000.  Zbl0957.49001
  5. [5] L. Ambrosio, S. Maniglia, M. Miranda Jr, D. Pallara, BV functions in abstract Wiener spaces, J. Funct. Anal., 258(2010), 785– 813.  Zbl1194.46066
  6. [6] L. Ambrosio, M. Miranda Jr, D. Pallara, Sets with finite perimeter in Wiener spaces, perimeter measure and boundary recti- fiability, Discrete Contin. Dyn. Syst., 28(2010), 591–606.  Zbl1196.28023
  7. [7] V. I. Bogachev, Gaussian Measures, American Mathematical Society, Providence R.I., 1998.  
  8. [8] V. I. Bogachev, A.Yu. Pilipenko, A.V. Shaposhnikov, Sobolev functions on infinite-dimensional domains, J.Math. Anal. Appl., 419(2014), 1023–1044.  Zbl1310.46035
  9. [9] V. Caselles, A. Lunardi, M. Miranda Jr, M. Novaga, Perimeter of sublevel sets in infinite dimensional spaces, Adv. Calc. Var., 5(2012), 59–76. [WoS] Zbl1257.49006
  10. [10] P. Celada, A. Lunardi, Traces of Sobolev functions on regular surfaces in infinite dimensions, J. Funct. Anal., 266(2014), 1948–1987. [WoS] Zbl1308.46042
  11. [11] E. De Giorgi, L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8) 82(1988), n.2, 199–210, English translation in: Ennio De Giorgi: Selected Papers, (L. Ambrosio, G. DalMaso, M. Forti, M. Miranda, S. Spagnolo eds.) Springer, 2006, 686–696.  
  12. [12] N. Dunford, J.T. Schwartz, Linear operators Part I: General theory, Wiley, 1958.  Zbl0084.10402
  13. [13] D. Feyel, A. de la Pradelle, Hausdorff measures on the Wiener space, Potential Anal. 1(1992), 177-189.  Zbl1081.28500
  14. [14] M. Fukushima, BV functions and distorted Ornstein-Uhlenbeck processes over the abstract Wiener space, J. Funct. Anal., 174(2000), 227-249.  Zbl0978.60088
  15. [15] M. Fukushima, M. Hino, On the space of BV functions and a Related Stochastic Calculus in Infinite Dimensions, J. Funct. Anal., 183(2001), 245-268.  Zbl0993.60049
  16. [16] L. Gross, Abstract Wiener spaces, in: Proc. Fifth Berkeley Symp. Math. Stat. Probab. (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, p. 31-42, Univ. California Press, Berkeley.  
  17. [17] M. Hino, Sets of finite perimeter and the Hausdorff–Gauss measure on the Wiener space, J. Funct. Anal., 258(2010), 1656– 1681. [WoS] Zbl1196.46029
  18. [18] M. Hino, H. Uchida, Reflecting Ornstein-Uhlenbeck processes on pinned path spaces, Proceedings of RIMS Workshop on Stochastic Analysis and Applications, 111–128, RIMS Kokyuroku Bessatsu, B6, Kyoto, 2008.  Zbl1143.60050
  19. [19] M. Ledoux, Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space, Bull. Sci. Math., 118(1994), 485–510.  Zbl0841.49024
  20. [20] P. Malliavin, Stochastic analysis, Grundlehren der Mathematischen Wissenschaften 313, Springer, 1997.  
  21. [21] M.Miranda Jr, M. Novaga, D. Pallara, An introduction to BV functions in Wiener spaces, Advanced Studies in Pure Mathematics, 67, 245–293, Tokyo 2015.  
  22. [22] M. Miranda Jr, D. Pallara, F. Paronetto, M. Preunkert, Short–time heat flow and functions of bounded variation in RN, Ann. Fac. Sci. Toulouse, XVI(2007), 125–145.  Zbl1142.35445
  23. [23] R. O’Donnell, Analysis of Boolean functions, Cambridge University Press, 2014.  
  24. [24] M. Röckner, R.C. Zhu, X.C. Zhu, The stochastic reflection problem on an infinite dimensional convex set and BV functions in a Gelfand triple, Ann. Probab., 40(2012), 1759-1794. [WoS] Zbl1267.60074
  25. [25] D. Trevisan:, BV-regularity for the Malliavin derivative of the maximum of the Wiener process, Electron. Commun. Probab., 18(2013), no.29. [WoS][Crossref] Zbl1309.60054
  26. [26] D. Trevisan, Lagrangian flows driven by BV fields in Wiener spaces, Probab. Theory Related Fields, DOI 10.1007/s00440- 014-0589-1. [Crossref] Zbl1329.35109
  27. [27] A.I. Vol’pert, S.I. Hudjaev, Analysis in classes of discontinuous functions and equations of mathematical physics, Martinus Nijhoff Publishers, Dordrecht, NL, 1985.  
  28. [28] L. Zambotti, Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection, Probab. Theory Related Fields, 123(2002) 579-600.  Zbl1009.60047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.