The pro-unipotent radical of the pro-algebraic fundamental group of a compact Kähler manifold

Jonathan Pridham[1]

  • [1] Trinity College, Cambridge, CB2 1TQ, U.K.

Annales de la faculté des sciences de Toulouse Mathématiques (2007)

  • Volume: 16, Issue: 1, page 147-178
  • ISSN: 0240-2963

Abstract

top
The aim of this paper is to study the pro-algebraic fundamental group of a compact Kähler manifold. Following work by Simpson, the structure of this group’s pro-reductive quotient is already well understood. We show that Hodge-theoretic methods can also be used to establish that the pro-unipotent radical is quadratically presented. This generalises both Deligne et al.’s result on the de Rham fundamental group, and Goldman and Millson’s result on deforming representations of Kähler groups, and can be regarded as a consequence of formality of the schematic homotopy type. New examples are given of groups which cannot arise as Kähler groups.

How to cite

top

Pridham, Jonathan. "The pro-unipotent radical of the pro-algebraic fundamental group of a compact Kähler manifold." Annales de la faculté des sciences de Toulouse Mathématiques 16.1 (2007): 147-178. <http://eudml.org/doc/10028>.

@article{Pridham2007,
abstract = {The aim of this paper is to study the pro-algebraic fundamental group of a compact Kähler manifold. Following work by Simpson, the structure of this group’s pro-reductive quotient is already well understood. We show that Hodge-theoretic methods can also be used to establish that the pro-unipotent radical is quadratically presented. This generalises both Deligne et al.’s result on the de Rham fundamental group, and Goldman and Millson’s result on deforming representations of Kähler groups, and can be regarded as a consequence of formality of the schematic homotopy type. New examples are given of groups which cannot arise as Kähler groups.},
affiliation = {Trinity College, Cambridge, CB2 1TQ, U.K.},
author = {Pridham, Jonathan},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {pro-algebraic completion; Kähler group; differential graded algebra},
language = {eng},
number = {1},
pages = {147-178},
publisher = {Université Paul Sabatier, Toulouse},
title = {The pro-unipotent radical of the pro-algebraic fundamental group of a compact Kähler manifold},
url = {http://eudml.org/doc/10028},
volume = {16},
year = {2007},
}

TY - JOUR
AU - Pridham, Jonathan
TI - The pro-unipotent radical of the pro-algebraic fundamental group of a compact Kähler manifold
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 1
SP - 147
EP - 178
AB - The aim of this paper is to study the pro-algebraic fundamental group of a compact Kähler manifold. Following work by Simpson, the structure of this group’s pro-reductive quotient is already well understood. We show that Hodge-theoretic methods can also be used to establish that the pro-unipotent radical is quadratically presented. This generalises both Deligne et al.’s result on the de Rham fundamental group, and Goldman and Millson’s result on deforming representations of Kähler groups, and can be regarded as a consequence of formality of the schematic homotopy type. New examples are given of groups which cannot arise as Kähler groups.
LA - eng
KW - pro-algebraic completion; Kähler group; differential graded algebra
UR - http://eudml.org/doc/10028
ER -

References

top
  1. Deligne (P.), Griffiths (P.), Morgan (J.), Sullivan (D.).— Real homotopy theory of Kähler manifolds, Invent. Math., 29(3), p. 245–274 (1975). Zbl0312.55011MR382702
  2. Deligne (P.), Milne (J. S.), Ogus (A.), Shih (K.-Y.).— Hodge cycles, motives, and Shimura varieties, volume 900 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1982. Zbl0465.00010MR654325
  3. Goldman (W. M.), Millson (J. J.).— The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math., (67), p. 43–96 (1988). Zbl0678.53059MR972343
  4. Grothendieck (A.).— Technique de descente et théorèmes d’existence en géométrie algébrique. II. Le théorème d’existence en théorie formelle des modules, In Séminaire Bourbaki, Vol. 5, pages Exp. No. 195, Soc. Math. France, Paris, p. 369–390 (1995). Zbl0234.14007MR1603480
  5. Hain (R. M.).— The Hodge de Rham theory of relative Malcev completion, Ann. Sci. École Norm. Sup. (4), 31(1), p. 47–92 (1998). Zbl0911.14008MR1604294
  6. Hoschschild (G.), Mostow (G. D.).— Pro-affine algebraic groups, Amer. J. Math., 91, p. 1127–1140 (1969). Zbl0213.22702MR255690
  7. Katzarkov (L.), Pantev (T.), Toën (B.).— Schematic homotopy types and non-abelian Hodge theory, arXiv math.AG/0107129, 2005. 
  8. Manetti (M.).— Deformation theory via differential graded Lie algebras. In Algebraic Geometry Seminars, 1998–1999 (Italian) (Pisa), pages 21–48. Scuola Norm. Sup., Pisa, 1999. arXiv math.AG/0507284. MR1754793
  9. Pridham (J. P.).— The structure of the pro- l -unipotent fundamental group of a smooth variety, arXiv math.AG/0401378, 2004. 
  10. Schlessinger (M.).— Functors of Artin rings. Trans. Amer. Math. Soc., 130, p. 208–222 (1968). Zbl0167.49503MR217093
  11. Simpson (C. T.).— Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math., (75), p. 5–95 (1992). Zbl0814.32003MR1179076

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.