The pro-unipotent radical of the pro-algebraic fundamental group of a compact Kähler manifold
- [1] Trinity College, Cambridge, CB2 1TQ, U.K.
Annales de la faculté des sciences de Toulouse Mathématiques (2007)
- Volume: 16, Issue: 1, page 147-178
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Deligne (P.), Griffiths (P.), Morgan (J.), Sullivan (D.).— Real homotopy theory of Kähler manifolds, Invent. Math., 29(3), p. 245–274 (1975). Zbl0312.55011MR382702
- Deligne (P.), Milne (J. S.), Ogus (A.), Shih (K.-Y.).— Hodge cycles, motives, and Shimura varieties, volume 900 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1982. Zbl0465.00010MR654325
- Goldman (W. M.), Millson (J. J.).— The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math., (67), p. 43–96 (1988). Zbl0678.53059MR972343
- Grothendieck (A.).— Technique de descente et théorèmes d’existence en géométrie algébrique. II. Le théorème d’existence en théorie formelle des modules, In Séminaire Bourbaki, Vol. 5, pages Exp. No. 195, Soc. Math. France, Paris, p. 369–390 (1995). Zbl0234.14007MR1603480
- Hain (R. M.).— The Hodge de Rham theory of relative Malcev completion, Ann. Sci. École Norm. Sup. (4), 31(1), p. 47–92 (1998). Zbl0911.14008MR1604294
- Hoschschild (G.), Mostow (G. D.).— Pro-affine algebraic groups, Amer. J. Math., 91, p. 1127–1140 (1969). Zbl0213.22702MR255690
- Katzarkov (L.), Pantev (T.), Toën (B.).— Schematic homotopy types and non-abelian Hodge theory, arXiv math.AG/0107129, 2005.
- Manetti (M.).— Deformation theory via differential graded Lie algebras. In Algebraic Geometry Seminars, 1998–1999 (Italian) (Pisa), pages 21–48. Scuola Norm. Sup., Pisa, 1999. arXiv math.AG/0507284. MR1754793
- Pridham (J. P.).— The structure of the pro--unipotent fundamental group of a smooth variety, arXiv math.AG/0401378, 2004.
- Schlessinger (M.).— Functors of Artin rings. Trans. Amer. Math. Soc., 130, p. 208–222 (1968). Zbl0167.49503MR217093
- Simpson (C. T.).— Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math., (75), p. 5–95 (1992). Zbl0814.32003MR1179076