The Hodge de Rham theory of relative Malcev completion

Richard M. Hain

Annales scientifiques de l'École Normale Supérieure (1998)

  • Volume: 31, Issue: 1, page 47-92
  • ISSN: 0012-9593

How to cite

top

Hain, Richard M.. "The Hodge de Rham theory of relative Malcev completion." Annales scientifiques de l'École Normale Supérieure 31.1 (1998): 47-92. <http://eudml.org/doc/82456>.

@article{Hain1998,
author = {Hain, Richard M.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {fundamental group; variation of Hodge structure},
language = {eng},
number = {1},
pages = {47-92},
publisher = {Elsevier},
title = {The Hodge de Rham theory of relative Malcev completion},
url = {http://eudml.org/doc/82456},
volume = {31},
year = {1998},
}

TY - JOUR
AU - Hain, Richard M.
TI - The Hodge de Rham theory of relative Malcev completion
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 1
SP - 47
EP - 92
LA - eng
KW - fundamental group; variation of Hodge structure
UR - http://eudml.org/doc/82456
ER -

References

top
  1. [1] P. CARTIER, Dualité de Tanaka des groupes et des algèbres de Lie, (C. R. Acad. Sci. Paris, t. 242, 1956, pp. 322-325). Zbl0070.02506MR17,762f
  2. [2] K.-T. CHEN, Reduced Bar constructions on de Rham complexes, in : A. Heller, A. Tierney (eds), (Algebra, Topology, and Category Theory, Academic Press, 1977, pp. 19-32). Zbl0341.57034MR54 #1272
  3. [3] K.-T. CHEN, Iterated path integrals, (Bull. Amer. Math. Soc., Vol. 83, 1977, pp. 831-879). Zbl0389.58001MR56 #13210
  4. [4] P. DELIGNE, Variation sur un thème de Chen et Sullivan, Notes, April, 1989. 
  5. [5] W. FULTON and J. HARRIS, Representation Theory, GTM 129, Springer-Verlag, 1991. Zbl0744.22001MR93a:20069
  6. [6] R. HAIN, The indecomposables of the bar construction, (Proc. Amer. Math. Soc., Vol. 98, 1986, pp. 312-316). Zbl0613.55007MR87i:55047
  7. [7] R. HAIN, The geometry of the mixed Hodge structure on the fundamental group, in Algebraic Geometry, Bowdoin 1985, (Proc. Symp. Pure Math., Vol. 46, 1987, pp. 247-281). Zbl0654.14006MR89g:14010
  8. [8] R. HAIN, The de Rham homotopy theory of complex algebraic varieties I, (K-Theory Vol. 1, 1987, pp. 271-324). Zbl0637.55006MR88h:14029
  9. [9] R. HAIN, Completions of mapping class groups and the cycle C - C-, in Mapping Class Groups and Moduli Spaces of Riemann Surfaces, C.-F. Bödigheimer and R. Hain, editors, (Contemp. Math., Vol. 150, 1993, pp. 75-105). Zbl0831.57005MR95e:14018
  10. [10] R. HAIN, Torelli groups and Geometry of Moduli Spaces of Curves, in Current Topics in Complex Algebraic Geometry (C. H. Clemens and J. Kollar, eds.) (MSRI publications no. 28, Cambridge University Press, 1995). Zbl0868.14006MR97d:14036
  11. [11] R. HAIN, Infinitesimal presentations of the Torelli groups, (J. Amer. Math. Soc., Vol. 10, 1997, pp. 597-651). Zbl0915.57001MR97k:14024
  12. [12] R. HAIN and S. ZUCKER, Unipotent variations of mixed Hodge structure, (Invent. Math., Vol. 88, 1987, pp. 83-124). Zbl0622.14007MR88i:32035
  13. [13] T. KOHNO, Monodromy representations of braid groups and Yang-Baxter equations, (Ann. Inst. Fourier, Grenoble, Vol. 37, 1987, pp. 139-160). Zbl0634.58040MR89h:17030
  14. [14] S. MAC LANE, (Homology, Springer-Verlag, 1963). 
  15. [15] J. MORGAN, The algebraic topology of smooth algebraic varieties, (Publ. Math. IHES, 48, 1978, 137-204 ; correction, Publ. Math. IHES, Vol. 64, 1986, pp. 185). Zbl0401.14003
  16. [16] M. SAITO, Mixed Hodge modules and admissible variations, (C. R. Acad. Sci. Paris, t. 309, 1989, Série I, pp. 351-356). Zbl0765.14006MR91i:32029
  17. [17] D. SULLIVAN, Infinitesimal computations in topology, (Publ. Math. IHES, Vol. 47, 1977, pp. 269-331). Zbl0374.57002MR58 #31119

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.