Convex -invariant functions and refinements of von Neumann’s inequality
Bernard Dacorogna[1]; Pierre Maréchal[2]
- [1] EPFL, CH-1015 Lausanne, Switzerland
- [2] Université Paul Sabatier, Institut de mathématiques, F-31062 Toulouse cedex 9, France
Annales de la faculté des sciences de Toulouse Mathématiques (2007)
- Volume: 16, Issue: 1, page 71-89
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topDacorogna, Bernard, and Maréchal, Pierre. "Convex $\operatorname{SO}(N)\times \operatorname{SO}(n)$-invariant functions and refinements of von Neumann’s inequality." Annales de la faculté des sciences de Toulouse Mathématiques 16.1 (2007): 71-89. <http://eudml.org/doc/10038>.
@article{Dacorogna2007,
abstract = {A function $f$ on $M_\{N\times n\}(\{\mathbb\{R\}\})$ which is $\mathop \{\mathrm\{SO\}(N)\}\times \mathop \{\mathrm\{SO\}(n)\}$-invariant is convex if and only if its restriction to the subspace of diagonal matrices is convex. This results from Von Neumann type inequalities and appeals, in the case where $N=n$, to the notion of signed singular value.},
affiliation = {EPFL, CH-1015 Lausanne, Switzerland; Université Paul Sabatier, Institut de mathématiques, F-31062 Toulouse cedex 9, France},
author = {Dacorogna, Bernard, Maréchal, Pierre},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {singular values; von Neumann's inequality; convex -invariant functions},
language = {eng},
number = {1},
pages = {71-89},
publisher = {Université Paul Sabatier, Toulouse},
title = {Convex $\operatorname\{SO\}(N)\times \operatorname\{SO\}(n)$-invariant functions and refinements of von Neumann’s inequality},
url = {http://eudml.org/doc/10038},
volume = {16},
year = {2007},
}
TY - JOUR
AU - Dacorogna, Bernard
AU - Maréchal, Pierre
TI - Convex $\operatorname{SO}(N)\times \operatorname{SO}(n)$-invariant functions and refinements of von Neumann’s inequality
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 1
SP - 71
EP - 89
AB - A function $f$ on $M_{N\times n}({\mathbb{R}})$ which is $\mathop {\mathrm{SO}(N)}\times \mathop {\mathrm{SO}(n)}$-invariant is convex if and only if its restriction to the subspace of diagonal matrices is convex. This results from Von Neumann type inequalities and appeals, in the case where $N=n$, to the notion of signed singular value.
LA - eng
KW - singular values; von Neumann's inequality; convex -invariant functions
UR - http://eudml.org/doc/10038
ER -
References
top- J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Archives For Rational Mechanics and Analysis, 63, p. 337-403 (1977). Zbl0368.73040MR475169
- B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, 1989. Zbl0703.49001MR990890
- B. Dacorogna, P. Marcellini, Implicit Partial Differential Equations, Birkhäuser, 1999. Zbl0938.35002MR1702252
- B. Dacorogna, H. Koshigoe, On the different notions of convexity for rotationally invariant functions, Annales de la Faculté des Sciences de Toulouse, II(2), p. 163-184 (1993). Zbl0828.49016MR1253387
- J.-B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Algorithms, I and II, Springer-Verlag, 1993. Zbl0795.49002MR1261420
- R. A. Horn, C. A. Johnson, Matrix Analysis, Cambridge University Press, 1985. Zbl0576.15001MR832183
- B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Annales Scientifiques de l’Ecole Normale Supérieure, 6, p. 413-455 (1973). Zbl0293.22019MR364552
- P. J. Laurent, Approximation et Optimisation, Hermann, 1972. Zbl0238.90058MR467080
- H. Le Dret, Sur les fonctions de matrices convexes et isotropes, Comptes Rendus de l’Académie des Sciences, Paris, Série 1, Mathématiques, 310, p. 617-620 (1990). Zbl0693.15013MR1050144
- A. Lewis, Group invariance and convex matrix analysis, SIAM Journal of Matrix Analysis and Applications, 17, p. 927-949 (1996). Zbl0876.15016MR1410709
- A. Lewis, Convex analysis on Cartan subspaces, Nonlinear Analysis, 42, p. 813-820 (2000). Zbl1159.15303MR1776925
- A. Lewis, The mathematics of eigenvalue optimization, Mathematical Programming, Series B 97, p. 155-176 (2003). Zbl1035.90085MR2004395
- P. Rosakis, Characterization of convex isotropic functions, Journal of Elasticity, 49, p. 257-267 (1997). Zbl0906.73018MR1633494
- R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970. Zbl0193.18401MR274683
- A. Seeger, Convex analysis of spectrally defined matrix functions, SIAM Journal on Optimization, 7(3), p. 679-696 (1997). Zbl0890.15018MR1462061
- D. Serre, Matrices: Theory and Applications, Grad. Text in Math. 216, Springer-Verlag, 2002. See also http://www.umpa.ens-lyon.fr/serre/publi.html. Zbl1011.15001MR1923507
- F. Vincent, Une note sur les fonctions convexes invariantes, Annales de la Faculté des Sciences de Toulouse, p. 357-363 (1997). Zbl0915.17007MR1611773
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.