On convexity, the Weyl group and the Iwasawa decomposition

Bertram Kostant

Annales scientifiques de l'École Normale Supérieure (1973)

  • Volume: 6, Issue: 4, page 413-455
  • ISSN: 0012-9593

How to cite


Kostant, Bertram. "On convexity, the Weyl group and the Iwasawa decomposition." Annales scientifiques de l'École Normale Supérieure 6.4 (1973): 413-455. <http://eudml.org/doc/81923>.

author = {Kostant, Bertram},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {4},
pages = {413-455},
publisher = {Elsevier},
title = {On convexity, the Weyl group and the Iwasawa decomposition},
url = {http://eudml.org/doc/81923},
volume = {6},
year = {1973},

AU - Kostant, Bertram
TI - On convexity, the Weyl group and the Iwasawa decomposition
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1973
PB - Elsevier
VL - 6
IS - 4
SP - 413
EP - 455
LA - eng
UR - http://eudml.org/doc/81923
ER -


  1. [1] S. ARAKI, On root systems and an infinitesmal classification of irreducible symmetric spaces (J. of Math, Osaka City Univ., vol. 13, 1962, p. 1-34). Zbl0123.03002MR27 #3743
  2. [2] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press, New-York, 1962. Zbl0111.18101MR26 #2986
  3. [3] A. HORN, Doubly stockastic matrices and the diagonal of a rotation matrix (Amer. J. Math, vol. 76, 1954, p. 620-630). Zbl0055.24601MR16,105c
  4. [4] J. E. HUMPHREYS, Introduction to Lie algebras and representation theory, Springer-Verlag, 1972. Zbl0254.17004MR48 #2197
  5. [5] N. IWAHORI and I. SATAKE, On Cartan subalgebras of a Lie algebra, Kodai Math Seminar Report, N° 3, 1950, p. 51-60. Zbl0045.01102MR12,585c
  6. [6] B. KOSTANT, The principal three dimensional subgroups and the Betti numbers of a complex semi-simple Lie group (Amer. J. Math., vol. 81, 1959, p. 973-1032). Zbl0099.25603MR22 #5693
  7. [7] B. KOSTANT, Lie group representations on polynomial rings (Amer. J. Math., vol. 86, 1963, p. 327-402). Zbl0124.26802MR28 #1252
  8. [8] B. KOSTANT and S. RALLIS, Orbits and representations associated with symmetric spaces (Amer. J. Math., vol. 93, 1971, p. 753-809). Zbl0224.22013MR47 #399
  9. [9] A. LENARD, Generalization of the Golden-Thompson Inequality, Tr eA eB tr eA+B (Indiana Univ. Math. J., vol. 21, 1971, p. 457-467). Zbl0215.08606MR44 #6724
  10. [10] O. LOOS, Symmetric Spaces, I. General Theory, Benjamin, 1969. Zbl0175.48601MR39 #365a
  11. [11] G. D. MOSTOW, Some new decomposition theorem for semi-simple Lie groups (Memoirs of the A. M. S., N° 14, 1955). Zbl0064.25901MR16,1087g
  12. [12] Classification de Groupes de Lie algebriques, (Séminaire C. Chevalley, 1956-1958, vol. I). 
  13. [13] M. SUGIURA, Conjugate classes of Cartan subalgebras in real semi-simple Lie algebras (J. Math Soc., vol. 11, 1959, p. 374-434). Zbl0204.04201MR26 #3827
  14. [14] C. THOMPSON, Inequalities and partial orders on matrix spaces (Indiana Univ. Math. J., vol. 21, 1971, p. 469-480). Zbl0227.15005MR45 #3442
  15. [15] F. WARNER, Foundations of Differential Manifolds and Lie Groups, Scott, Foresman and Company. Zbl0241.58001
  16. [16] A. HORN, On the eigenvalues of a matrix with prescribed singular values, Proceedings of the Amer. Math. Soc., vol. 5, 1954, p. 4-7. Zbl0055.00908MR15,847d

Citations in EuDML Documents

  1. Piotr Graczyk, A central limit theorem on the space of positive definite symmetric matrices
  2. Mogens Flensted-Jensen, David L. Ragozin, Spherical functions are Fourier transforms of L 1 -functions
  3. J. J. Duistermaat, On the similarity between the Iwasawa projection and the diagonal part
  4. Zachary Sarver, Tin-Yau Tam, Extension of Wang-Gong monotonicity result in semisimple Lie groups
  5. Didier Arnal, Mabrouk Ben Ammar, Mohamed Selmi, Le problème de la réduction à un sous-groupe dans la quantification par déformation
  6. Françoise Vincent, Une note sur les fonctions invariantes
  7. Victor Guillemin, On the Moment Mapping
  8. Xuhua Liu, Tin-Yau Tam, Extensions of Three Matrix Inequalities to Semisimple Lie Groups
  9. Bernard Dacorogna, Pierre Maréchal, Convex SO ( N ) × SO ( n ) -invariant functions and refinements of von Neumann’s inequality
  10. Joachim Hilgert, Karl-Hermann Neeb, Werner Plank, Symplectic convexity theorems and coadjoint orbits

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.